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ABSTRACT
We study an online inventory trading problem where a user seeks
to maximize the aggregate revenue of trading multiple inventories
over a time horizon. The trading constraints and concave revenue
functions are revealed sequentially in time, and the user needs to
make irrevocable decisions. The problem has wide applications in
various engineering domains. Existing works employ the primal-
dual framework to design online algorithms with sub-optimal, al-
beit near-optimal, competitive ratios (CR). We exploit the problem
structure to develop a new divide-and-conquer approach to solve
the online multi-inventory problem by solving multiple calibrated
single-inventory ones separately and combining their solutions. The
approach achieves the optimal CR of ln𝜃 +1 if𝑁 ≤ ln𝜃 +1, where𝑁
is the number of inventories and 𝜃 represents the revenue function
uncertainty; it attains a CR of 1/[1−𝑒−1/(ln𝜃+1) ] ∈ [ln𝜃+1, ln𝜃+2)
otherwise. The divide-and-conquer approach reveals novel struc-
tural insights for the problem, (partially) closes a gap in existing
studies, and generalizes to broader settings. For example, it gives an
algorithm with a CR within a constant factor to the lower bound for
a generalized one-way trading problem with price elasticity with
no previous results. When developing the above results, we also
extend a recent CR-Pursuit algorithmic framework and introduce
an online allocation problem with allowance augmentation, both
of which can be of independent interest.

1 INTRODUCTION
We consider an important class of online optimization problem,
optimizing the trading or allocation of limited resources, such as
inventories, cryptocurrency, budgets, or electric power, across a
multi-round decision period with dynamic per-round revenue func-
tions and allocation conditions. In the problem, the online decision
maker has 𝑁 capacity-limited inventories to trade in a decision
period of 𝑇 slots, e.g., airlines selling flight tickets with different
classes. At each slot 𝑡 , there are two types of trading constraints.
The first is the total allocation of all inventories bounded by the
allowance 𝐴𝑡 . The second is that the allocation of each inventory 𝑖
is bounded by the rate limit 𝛿𝑖,𝑡 . The problem has applications in
different domains, including ad allocation, bilateral trading, energy
storage management, EV charging, etc.

We consider the online optimization problem with multiple in-
ventories (OOIC-M) and formulate it in (1). In OOIC-M, we opti-
mize the inventory trading {𝑣𝑖,𝑡 }𝑖∈[𝑁 ],𝑡 ∈[𝑇 ] to achieve the maxi-
mum total revenue subjecting to the capacity constraint of each
inventory (2), the allowance constraint at each slot (3), and the
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allocation rate limit constraint for each inventory at each slot (4).

OOIC-M : max
∑︁

𝑖∈[𝑁 ]

∑︁
𝑡 ∈[𝑇 ]

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) (1)

s.t.
∑︁
𝑡

𝑣𝑖,𝑡 ≤ 𝐶𝑖 ,∀𝑖 ∈ [𝑁 ], (2)∑︁
𝑖

𝑣𝑖,𝑡 ≤ 𝐴𝑡 ,∀𝑡 ∈ [𝑇 ], (3)

0 ≤ 𝑣𝑖,𝑡 ≤ 𝛿𝑖,𝑡 ,∀𝑡 ∈ [𝑇 ], 𝑖 ∈ [𝑁 ], (4)

We are interested in the online setting that at each slot 𝑡 , the
online decision maker without the information of the decision
period 𝑇 is fed the revenue functions {𝑔𝑖,𝑣 (·)}𝑖∈[𝑁 ] , the allowance
𝐴𝑡 and the rate limits {𝛿𝑖,𝑡 }𝑖∈[𝑁 ] . We need to irrevocably determine
the allocation at slot 𝑡 , i.e., {𝑣𝑖,𝑡 }𝑖∈[𝑁 ] . After that, if the decision
period ends, we stop and know the information of 𝑇 . Otherwise,
we move to the next slot and continue the trading. We consider the
following set of revenue functions (≜ G),

• 𝑔𝑖,𝑡 (·) is concave and differentiable with 𝑔(0) = 0;
• 𝑔′

𝑖,𝑡
(𝑣𝑖,𝑡 ) ∈ [𝑝min, 𝑝max],∀𝑣𝑖,𝑡 ∈ [0, 𝛿𝑖,𝑡 ].

We consider that 𝑝max ≥ 𝑝min > 0 and denote 𝜃 = 𝑝max/𝑝min.
The revenue functions capture the case where the marginal revenue
of allocating more inventory is non-increasing in the allocation
amount but always between 𝑝min and 𝑝max.

We use Competitive Ratio (CR) as the performance metric for
online algorithms. The CR of an algorithm A is defined as the
worst-case performance ratio between the offline optimal and the
online objective under the algorithm, i.e.,

CR(A) = sup
𝜎 ∈Σ

𝑂𝑃𝑇 (𝜎)
𝐴𝐿𝐺 (𝜎) , (5)

where 𝜎 ∈ Σ denotes an input and Σ represents all possible input;
𝑂𝑃𝑇 (𝜎) and 𝐴𝐿𝐺 (𝜎) denote the offline optimal objective and the
online objective of A under input 𝜎 , respectively.

2 OUR APPROACH AND SELECTED RESULTS
We propose a divide-and-conquer approach for deriving online
algorithms for OOIC-M. The general idea is that we can optimize
OOIC-M by first allocating the allowance to the inventories and
then separately optimizing the allocation of each inventory. More
specifically, we define the following subproblem for each 𝑖 ∈ [𝑁 ],

OOIC-S𝑖 : max
∑︁
𝑡

𝑔𝑖,𝑡 (𝑣𝑖,𝑡 ) (6)

𝑠 .𝑡 .
∑︁
𝑡

𝑣𝑖,𝑡 ≤ 𝐶𝑖 (7)

0 ≤ 𝑣𝑖,𝑡 ≤ 𝑎𝑖,𝑡 ,∀𝑡, (8)

where 𝑎𝑖,𝑡 is the allocated allowance to user 𝑖 at slot 𝑡 . 𝑔𝑖,𝑡 (𝑣𝑖,𝑡 )
is another algorithmic design space that allows us to exploit the
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Figure 1: The competitive ratios obtained by OR’20 [5], PO-
MACS’21 [6], and ours. We fix 𝑁 = 3 and vary 𝜃 from 1 to 60.

online allowance augmentation. Following this structure, we can
design an online algorithm with two main steps at each slot 𝑡 ,

(1) Step-I: Determine the allowance allocation, {𝑎𝑖,𝑡 }𝑖∈[𝑁 ] , ir-
revocably.

(2) Step-II: Determine the inventory allocation for each online
OOIC-S𝑖 , {𝑣𝑖,𝑡 }𝑖∈[𝑁 ] , irrevocably.

We note that this divide-and-conquer approach allows us to tackle
the two main challenges of the problem separately. First, the rev-
enue functions come online while the allocation across the decision
period is coupled due to the capacity constraint for each inventory,
which we can handle in Step-II. Second, the online allowance con-
straints and the rate constraints couple the decisions across the
inventories, which we tackle in Step-I.

To achieve a good online performance under the divide-and-
conquer structure, we can 1) (Step-I) find allowance allocation such
that the sum of the optimal objectives of the subproblems is close
to the optimal revenue of the original problem OOIC-M and 2)
(Step-II) design inventory allocation to achieve a close-to-optimal
online performance in each subproblem. Under such a goal, we
note that the problem in Step-II is close-related to the online ad
allocation problem with free disposal [3]. And Step-II is reduced to
the online optimization problem with a single inventory [4].

Our single-parametric online algorithm A&P(𝜋 ) with 𝜋 as a pa-
rameter to be specified stands for Allowance Augmented Allocation
and Pursuit. In Step-II, following the framework CR-Pursuit [4], we
determine the online inventory allocation 𝑣𝑖,𝑡 for each subproblem
to maintain the offline-to-online performance ratio being 𝜋 at all
slots. A useful property is that the online solution at most utilizes
1/𝜋 of the allocated allowance/rate limit. Given that, for Step-I,
we consider an online allowance augmentation scenario where the
online decision maker can utilize 𝜋-time allowance and is subject to
𝜋-time relaxer rate limit constraints, which generalizes the existing
study [3]. When 𝑁 ≤ 𝜋 , we can directly allocate the allowance
to each subproblem as its rate limit 𝛿𝑖,𝑡 . When 𝑁 > 𝜋 , we design
a scheme of Allowance Allocation at slot 𝑡 with Augmentation,
≜ AAt-A(𝜋 ). Please refer to the main paper for more details. In
particular, when choosing 𝜋 = ln𝜃 + 1, A&P(ln𝜃 + 1) achieves a
close-to-optimal performance guarantee.

Theorem 1. Our online algorithm A&P(ln𝜃 + 1) achieves the CR,

CR1 (𝐴&𝑃 (ln𝜃 + 1)) =
{
ln𝜃 + 1, 𝑁 ≤ ln𝜃 + 1
1/[1 − 𝑒−1/(ln𝜃+1) ], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(9)

Compared with a lower bound ln𝜃 +1, the CR we obtain matches
the lower bound when 𝑁 ≤ ln𝜃 + 1 and is within an additive
constant of one to the lower bound, otherwise. The problem has
also been studied in [6] and [5]. We provide an illustration and
comparison of the CRs achieved by [5, 6] and ours in Fig. 1. We
note that both studies are threshold-based algorithms following the
online primal-and-dual framework. We also discuss their empirical
performance and algorithmic behaviors in the main paper.

3 CONCLUDING REMARKS
Our consideration in Step-I generalizes the existing studies on the
online maximum allocation problem and the online ad allocation
problem with free disposal [3] to the online allowance augmenta-
tion scenario. We also discuss how to generalize our approach to
different sets of revenue functions that appear in real-world appli-
cations, e.g., IoT device information uploading and one-way trading
with price elasticity. We are interested in exploring the divide-and-
conquer approach under various online optimization problems that
involve multiple inventories or participants. Another interesting fu-
ture direction is adapting and generalizing our approach to various
real-world applications [7].
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