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1 EXTENDED ABSTRACT

Recently, there have been increasing interests in employing neural networks, including deep neural
networks (DNN), to solve constrained optimization problems in various problem domains, especially
those needed to be solved repeatedly in real-time. The idea behind these machine learning approaches
is to leverage the universal approximation capability of DNNs [5] to learn the mapping between the
input parameters to the solution of an optimization problem. Then one can directly pass the input
parameters through the trained DNN to obtain a quality solution much faster than iterative solvers.
Researchers have developed DNN schemes to solve essential optimal power flow problems in grid
operation with sub-percentage optimality loss and several orders of magnitude speedup as compared
to conventional solvers [1, 3, 4, 8] and for real-time power control and beam-forming design [9]
problems in wireless communication in a fraction of time used by existing solvers.

Despite these promising results, however, a major criticism of DNN and machine learning schemes
is that they usually cannot guarantee the solution feasibility with respect to all the inequality
and equality constraints of the optimization problem [8, 11]. This is due to the inherent neural
network prediction errors. Existing works address the feasibility concern mainly by incorporating the
constraints violation (e.g., a Lagrangian relaxation to compute constraint violation with Lagrangian
multipliers) into the loss function to guide the DNN training. These endeavors, while generating
great insights to the DNN design and working to some extent in case studies, can not guarantee the
solution feasibility without resorting to expensive post-processing procedures, e.g., feeding the DNN
solution as a warm start point into an iterative solver to obtain a feasible solution. To date, it remains
a largely open issue of ensuring DNN solution feasibility for constrained optimization problems.

In this paper, we address this challenge for general Optimization Problems with Linear (inequality)
Constraints (OPLC). Since linear equality constraints can be exploited to reduce the number of
decision variables without losing optimality (and removed), it suffices to focus on problems with
inequality constraints. We make the following contributions.

2 CONTRIBUTIONS AND RESULTS

We propose preventive learning as the first framework
to ensure DNN solution feasibility for OPLC without
post-processing.! We systematically calibrate inequal-
ity constraints used in DNN training, thereby anticipat-
ing prediction errors and ensuring the resulting DNN - .
. . . : Default OPLC ground-truth : Calibrated OPLC ground-truth
solutions remain feasible. -
> First, we determine the maximum calibration rate
for inequality constraints, i.e., the rate of adjusting
(reducing) constraints limits that represents the room for (prediction) errors without violating con-
straints, so that solutions from a preventively-trained DNN using the calibrated constraints respect
the original constraints for all possible inputs. See Fig. 1 for illustrations.
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Fig. 1. lllustration of constraints calibration

IThe results presented in this paper are reproduced from [10].
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Table 1. Performance comparison with SOTA DNN schemes in light-load and heavy-load regimes.

Case Scheme Average speedups Feasibility rate (%) Optimality loss (%) Worst-case violation (%)
light-load [ heavy-load | light-load | heavy-load | light-load | heavy-load | light-load | heavy-load
DNN-P %85 X86 100 88.12 0.02 0.03 0 5.43
DNN-D X85 x84 100 93.36 0.02 0.03 0 11.19
Case30 DNN-W %x0.90 %0.86 100 100 0 0 0 0
DNN-G x24 X26 100 100 0.13 0.04 0 0
DeepOPF+ X86 x93 100 100 0.03 0.09 0 0
DNN-P x137 %125 68.84 54.92 0.17 0.21 19.5 44.8
DNN-D x138 x124 73.42 55.37 0.20 0.24 16.69 43.1
Casel 18 DNN-W %x2.08 %x2.26 100 100 0 0 0 0
DNN-G %26 x16 100 100 1.29 0.39 0 0
DeepOPF+ x202 %228 100 100 0.37 0.41 0 0
DNN-P x115 x98 91.29 78.42 0.06 0.08 261.1 443.0
DNN-D x115 x102 91.99 82.92 0.07 0.07 231.6 348.1
Case300 DNN-W x1.04 x1.08 100 100 0 0 0 0
DNN-G x2.44 %x2.65 100 100 0.32 0.06 0 0
DeepOPF+ x130 x138 100 100 0.10 0.06 0 0

> Second, we determine a sufficient DNN size so that with preventive learning there exists a DNN
whose worst-case violation on calibrated constraints is smaller than the maximum calibration rate,
thus ensuring DNN solution feasibility, i.e., DNN’s output always satisfies the inequality constraints
for any input. We then directly construct a provable feasibility-guaranteed DNN model.

> Third, observing the feasibility-guaranteed DNN may not achieve strong optimality result, we
propose an adversarial training algorithm, called Adversarial-Sample Aware algorithm to further
improve its optimality without sacrificing feasibility guarantee and derive its performance guarantee.

> We apply the framework to design a DNN scheme, DeepOPF+, to solve DC optimal power
flow (DC-OPF) problems in grid operation. We compare DeepOPF+ with the conventional iterative
OPF solver Pypower and four DNN based schemes DNN-P/DNN-D/DNN-W/DNN-G adapted
from [7]/[3]/[2]/[6]. Simulation results over IEEE 30/118/300-bus test cases show that it outperforms
existing strong DNN baselines in ensuring 100% feasibility and attaining consistent optimality loss
(<0.19%) and speedup (up to x228) in both light-load and heavy-load regimes.
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