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Low Complexity Homeomorphic Projection to Ensure
Neural-Network Solution Feasibility for Optimization over
(Non-)Convex Set
ENMING LIANG, City University of Hong Kong, China
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There has been growing interest in employing neural networks (NN) to directly solve constrained optimization

problems with low run-time complexity. However, it is non-trivial to ensure NN solutions strictly satisfy

problem constraints due to inherent NN prediction errors. Existing feasibility-ensuring methods are either

computationally expensive or lack performance guarantee. In this paper, we propose homeomorphic projection
[3] as a low-complexity scheme to guarantee NN solution feasibility for optimization over a general set home-

omorphic to a unit ball, potentially nonconvex. The idea is to (i) learn a minimum distortion homeomorphic

mapping between the constraint set and a unit ball by invertible NN (INN), and then (ii) perform a simple

bisection operation concerning the unit ball so that the INN-mapped final solution is feasible with respect to

the constraint set with minor distortion-induced optimality loss. We prove the feasibility guarantee and bound

the optimality loss. Simulation results show that homeomorphic projection outperforms existing methods in

feasibility and run-time complexity, while achieving similar optimality loss.

CCS Concepts: • Theory of computation→ Continuous optimization; • Computing methodologies→
Neural networks.
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1 INTRODUCTION
Constrained Optimization (CO) has tremendous applications in various engineering domains,

including supply chain, transportation, power system, and system resource allocation. A large

number of iterative algorithms have been developed and incorporated into commercial solvers (e.g.,

Gurobi) to solve various CO problems. While widely successful, iterative algorithms can still fail to

solve challenging CO problems in real-time, limiting their usefulness in time-sensitive applications.

Recently, NN-based schemes have been developed for solving CO in real-time, including the end-to-

end (E2E) solution mapping [1] and the learning-to-optimize (L2O) iterative scheme [2]. However,

it is non-trivial to ensure NN solution feasibility with respect to the problem constraints, due

to inherent prediction errors. Existing feasibility-ensuring methods, e.g., penalty, sampling, and

projection approaches, are either computationally expensive or lack performance guarantee.
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2 Enming Liang, Minghua Chen, and Steven H. Low

In this paper, we develop homeomorphic projection (HP) as the first work to guarantee NN solution

feasibility for (fairly) general constrained optimization problems, with bounded optimality loss and

low run-time complexity.

2 HOMEOMORPHIC PROJECTION
We consider the continuous constrained optimization problem: min𝑥∈R𝑛 𝑓 (𝑥, 𝜃 ), s.t. 𝑥 ∈ K𝜃 ,

where 𝜃 is the input parameters and 𝑥 is the decision variables. We assume the constrained set

is homeomorphic to a unit ball as K𝜃 = 𝜓𝜃 (B), where 𝜓𝜃 ∈ H𝑛
is a homeomorphic mapping

(continuous bijection with continuous inverse). This assumption covers (i) any compact and convex

set and (ii) a class of compact and simply-connected non-convex sets (e.g., star set).

We propose to learn the minimum-distortion-homeomorphic (MDH) mapping between them by

the following problem: min𝜓𝜃 ∈H𝑛 logD(𝜓 −1
𝜃
,X𝜃 ), s.t. K𝜃 = 𝜓𝜃 (B), where D(𝜓 −1

𝜃
,X𝜃 ) indicates

the distortion of the mapping𝜓 −1
𝜃

over support set X𝜃 . We then leverage invertible neural network

(INN) Φ𝜃 to approximate the MDH mapping in an unsupervised manner.

After training, given an infeasible solution 𝑥𝜃 , we proposed a bisection algorithm to recover

its feasibility as 𝑥𝜃 = Φ𝜃 (𝛼∗𝑧𝜃 ) ∈ K𝜃 , where 𝑧𝜃 = Φ−1
𝜃
(𝑥𝜃 ) and 𝛼∗ = sup𝛼∈[0,1]{Φ𝜃 (𝛼𝑧𝜃 ) ∈ K𝜃 } is

solved efficiently through bisection.

3 MAIN RESULTS
Theorem 3.1. Given an infeasible 𝑥𝜃 with bounded prediction error 𝜖pre = sup𝜃 ∈Θ ∥𝑥𝜃 − 𝑥∗

𝜃
∥, and

a valid𝑚-layer INN mapping Φ𝜃 ∈ H𝑛 with approximation error 𝜖inn and distortion D(Φ−1
𝜃
,Y𝜃 ), the

bisection algorithm with maximum 𝑘 steps will return a solution 𝑥𝑘
𝜃
such that:

• it is guaranteed to be feasible, i.e., 𝑥𝑘
𝜃
∈ K𝜃 ;

• it has a bounded optimality loss as ∥𝑥𝑘
𝜃
− 𝑥∗

𝜃
∥ ≤ 𝜖pre +D(Φ−1

𝜃
,Y𝜃 ) (2𝜖inn + 3𝜖pre + 𝛿𝑘

bis
), where

𝛿𝑘
bis

= 2
−𝑘 (diam(K𝜃 ) + 𝜖pre) and Y𝜃 = K𝜃 + B(0,max{𝜖pre, 𝜖inn});

• it has a run-time complexity as O(𝑘 (𝑚𝑛2 +𝐺𝑛ineq)).
We test the HP framework over SDP and AC-OPF problems. The results (feasibility rate, solution

MAPE, objective MAPE, and speedup) are shown in the following table:

Table 1. Performance in constrained optimization problems

Method Feasibility Solution Objective Speedup Feasibility Solution Objective Speedup

% Δ% Δ% × % Δ% Δ% ×

SDP: 𝑛 = 15 × 15, 𝑛eq = 100, 𝑛ineq = 1 AC-OPF: 𝑛 = 344, 𝑛eq = 236, 𝑛ineq = 452

NN 45.02 5.92 1 31202.6 73.24 1.27 0.24 178.2

NN+WS 100 2.62 0.4 0.9 100 0.94 0.18 3.6

NN+Proj 100 5.12 1.72 1.2 100 1.55 0.24 3.8

NN+D-Proj 68.65 5.9 0.99 3.6 87.79 1.26 0.24 4.9

NN+H-Proj 100 6.51 1.19 149.2 100 1.58 0.51 24.6
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