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1 MOTIVATION AND BACKGROUND
Machine-learned control policies have had great empirical success

as dynamical systems become increasingly complicated in modern

applications ranging from autonomous driving to power systems.

Compared with traditional approaches, ML-based policies offer

more flexibility to leverage the underlying data distribution and

additional information like future predictions. However, when de-

ployed in changing environments, the performance of ML-based

policies may vary as the environment changes: When the current

environment is aligned with the data distribution that the ML-based

policy is trained on, they can achieve near-optimal performance.

Otherwise, the ML-based policy may perform much worse than a

robust classic controller.

Learning-augmented algorithms provides a promising way to

address the challenge of unreliable ML-based policy. A common

objective is to achieve near-optimal performance when the ML-

based policy is near-optimal (consistency) and robust performance

when the ML-based policy is unreliable (robustness). Towards this
goal, a widely-used approach is to combine a robust controller with

the ML-based policy [2–4]. Many existing results require the user

to know which controller will be robust and decide the parameters

of the learning-augmented controller before deployment to achieve

some target trade-off between consistency and robustness [3, 6, 7].

However, a limitation of this approach is that the pre-designed trade-

off and controller parameters may turn out to be too conservative

or optimistic when the performance of ML-based policies is time-

varying. Some works on learning-augmented control also study

the regret/competitive difference against a static hindsight optimal
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parameter [4, 5], but the results on adaptive/dynamic regret is still

missing. This motivates us to ask the following question:

Can we select the parameters of a learning-augmented controller
online that adapts to the current performance of the ML-based pol-
icy/advise with provable regret guarantees?

We provide an affirmative answer to this question in this project

from the perspective of online policy selection. We propose a novel

algorithm, Gradient-based Adaptive Policy Selection (GAPS), for gen-
eral policy selection problems with provable adaptive/regret guar-

antees. We also provide a concrete application example for GAPS

on learning-augmented Model Predictive Control (MPC).

2 PROBLEM SETTING
We consider a discrete-time online optimal control problem with

time-varying dynamics 𝑥𝑡+1 = 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ) and stage costs 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡 )
in a finite horizon𝑇 , where 𝑥𝑡 and𝑢𝑡 denote the state and control in-

put respectively. The learning-augmented controller is a controller

class with parameter 𝜃𝑡 ∈ Θ and it commits the control input

𝑢𝑡 = 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡 ) at time step 𝑡 . Suppose we design the parameter set

Θ such that for some fixed (can be unknown) parameters 𝜃 (𝑐 ) and
𝜃 (𝑟 ) in Θ, the consistent controller can be written as 𝜋𝑡 (·, 𝜃 (𝑐 ) ) and
the robust controller is 𝜋𝑡 (·, 𝜃 (𝑟 ) ). Different benchmark policy se-

quences correspond to different objectives for learning-augmented

control. For example, to achieve consistency and robustness simul-

taneously, it suffices for the online controller to achieve no regret

against the controller 𝜋𝑡 (·, 𝜃∗) with the static hindsight optimal pa-

rameter 𝜃∗. In contrast, it is more challenging to adapt to the timely

performance of the ML-based policy/advice because the controller

must compete against the controller 𝜋𝑡 (·, 𝜃∗𝑡 ) with time-varying

hindsight optimal parameter sequence {𝜃∗𝑡 }𝑡 ∈[𝑇 ] .
An an example of our problem setting is learning-augmented

MPC, inspired by [5]. In this example, the dynamical system is

𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ) = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 +𝑤𝑡 , with (𝐴𝑡 , 𝐵𝑡 ) known, and the stage

costs are 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡 ) = 𝑥⊤𝑡 𝑄𝑡𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑡𝑢𝑡 . At time 𝑡 , the controller

observes {𝑄𝑡 :𝑡+𝑘−1, 𝑅𝑡 :𝑡+𝑘−1,𝑤𝑡 :𝑡+𝑘−1 |𝑡 }, where 𝑤𝜏 |𝑡 denotes the
ML-based prediction of the future disturbance𝑤𝜏 available at time

step 𝑡 . Learning-augmented MPC commits the first entry of

argmin

𝑢𝑡 :𝑡+𝑘−1|𝑡

𝑡+𝑘−1∑︁
𝜏=𝑡

𝑓𝜏 (𝑥𝜏 |𝑡 , 𝑢𝜏 |𝑡 ) + 𝑥⊤𝑡+𝑘 |𝑡�̃�𝑥𝑡+𝑘 |𝑡

s. t. 𝑥𝑡 |𝑡 = 𝑥𝑡 , (1)

𝑥𝜏+1 |𝑡 = 𝐴𝜏𝑥𝜏 |𝑡 + 𝐵𝜏𝑢𝜏 |𝑡 + 𝜆
[𝜏−𝑡 ]
𝑡 𝑤𝜏 |𝑡 : 𝑡 ≤ 𝜏 < 𝑡+𝑘,
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Figure 1: Comparison of GAPS with Li et al. [5] for predictive control of scalar LQR system with sinusoidal disturbance. The
disburbance prediction noise is reduced by 100× after time 𝑡 = 100. GAPS adapts more quickly to the change in accuracy.

where 𝜃𝑡 =
(
𝜆
[0]
𝑡 , 𝜆

[1]
𝑡 , . . . , 𝜆

[𝑘−1]
𝑡

)
∈ Θ = [0, 1]𝑘 and �̃� is a fixed

positive-definite matrix. Intuitively, 𝜆
[𝜏 ]
𝑡 represents how much we

trust the ML-based prediction 𝜏 steps into the future. Under this

parameterization, the consistent parameter is 𝜃 (𝑐 ) = (1, . . . , 1) and
the robust parameter is 𝜃 (𝑟 ) = (0, . . . , 0), which means completely

“trust” or “distrust” the predictions.

3 APPROACH AND CONTRIBUTIONS
In our work, we propose a general exponentially decaying, or “con-

tractive”, perturbation property on the policy-induced closed-loop

dynamics. The contractive perturbation property we introduce

generalizes a key property of disturbance-action controllers [1, 8]

and includes other important policy classes such as MPC [5]. We

leverage this property to propose Gradient-based Adaptive Policy

Selection (GAPS, Algorithm 1). The design of GAPS is inspired by

online gradient descent with a novel way to estimate the gradient.

Our algorithm can be implemented efficiently for general policy

classes in time-varying nonlinear systems when the Jacobians of

past dynamics are known.

Our theoretical analysis shows GAPS can translate the regret

bounds in online optimization to online policy selection under

assumptions that generalize many previous works on online control

(e.g., [1, 8]). When applied to the learning-augmented MPC setting

in (1), GAPS achieves a dynamic regret bound against a fully time-

varying benchmark that depends on the path length.

Theorem 3.1 (Informal). Under a set of assumptions that are
satisfied by learning-augmented MPC in (1), GAPS with step size

𝜂𝑡 = 𝜂 = 𝑂 (1/
√
𝑇 ) can achieve a dynamic regret of𝑂

(√
𝑃𝑇

)
against

the time-varying hindsight optimal parameter sequence {𝜃∗𝑡 }𝑡 ∈[𝑇 ]
with path length constraint

∑𝑇−1
𝑡=1

𝜃∗𝑡 − 𝜃∗𝑡−1 ≤ 𝑃 .

Theorem 3.1 implies that in learning-augmented MPC, GAPS can

adapt to the real-time quality of ML-based predictions by adjusting

the “trust-level” {𝜆 [𝜏 ] }𝜏∈[𝑘 ] for future disturbance predictions with
different look-ahead lengths. We verify our theoretical result by

numerically comparing GAPS with the Self-Tuning 𝜆-Confident

Control algorithm proposed in [5]. The simulation results show

that GAPS can adapt to a change of prediction quality much quicker

than the benchmark for comparison (see Figure 1). Our ongoing

research focuses on relaxing the assumptions on known dynamics

and other assumptions that limits the type of dynamical systems

and policy classes our result can apply to.

Algorithm 1 Gradient-based Adaptive Policy Selection (GAPS)

Require: Step size {𝜂𝑡 }, buffer length 𝐵, initial parameter 𝜃0.

1: for 𝑡 = 0, . . . ,𝑇 − 1 do
2: Observe the current state 𝑥𝑡 .

3: Pick control action 𝑢𝑡 = 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡 ).
4: Incur the stage cost 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡 ) and observe 𝑓𝑡 , 𝑔𝑡−1.
5:

𝜕𝑥𝑡
𝜕𝜃𝑡−1

← 𝜕𝑔𝑡−1
𝜕𝑢𝑡−1

|𝑥𝑡−1,𝑢𝑡−1 ·
𝜕𝜋𝑡−1
𝜕𝜃𝑡−1

|𝑥𝑡−1,𝜃𝑡−1 .
6:

𝜕𝑥𝑡
𝜕𝑥𝑡−1

← 𝜕𝑔𝑡−1
𝜕𝑥𝑡−1

|𝑥𝑡−1,𝑢𝑡−1 +
𝜕𝑔𝑡−1
𝜕𝑢𝑡−1

|𝑥𝑡−1,𝑢𝑡−1 ·
𝜕𝜋𝑡−1
𝜕𝑥𝑡−1

|𝑥𝑡−1,𝜃𝑡−1 .
7: for 𝑏 = 2, . . . , 𝐵 − 1 do
8: Use the buffer to compute

𝜕𝑥𝑡
𝜕𝜃𝑡−𝑏

← 𝜕𝑥𝑡
𝜕𝑥𝑡−1

· 𝜕𝑥𝑡−1
𝜕𝜃𝑡−𝑏

.

9: end for
10: Compute the approximated gradient

𝐺𝑡 =

(
𝜕𝑓𝑡

𝜕𝑥𝑡
|𝑥𝑡 ,𝑢𝑡 +

𝜕𝑓𝑡

𝜕𝑢𝑡
|𝑥𝑡 ,𝑢𝑡 ·

𝜕𝜋𝑡

𝜕𝑥𝑡
|𝑥𝑡 ,𝜃𝑡

)
·
𝐵−1∑︁
𝑏=1

𝜕𝑥𝑡

𝜕𝜃𝑡−𝑏

+ 𝜕𝑓𝑡

𝜕𝑢𝑡
|𝑥𝑡 ,𝑢𝑡 ·

𝜕𝜋𝑡

𝜕𝜃𝑡
|𝑥𝑡 ,𝜃𝑡 .

11: Perform the projected gradient update 𝜃𝑡+1 =
∏

Θ (𝜃𝑡−𝜂𝑡𝐺𝑡 ).

12: Empty the buffer, and save

[
𝜕𝑢𝑡
𝜕𝜃𝑡

,
𝜕𝑥𝑡
𝜕𝜃𝑡−1

, . . . ,
𝜕𝑥𝑡

𝜕𝜃𝑡−𝐵+1

]
.

13: end for
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