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ABSTRACT
As Machine Learning methods have become more reliable, there
has been growing interest in designing algorithms that leverage
predictions about the input. A number of previous works have de-
signed algorithms that benefit from good predictions and are robust
against adversarial error in prediction. Considering adversarial pre-
dictions is, however, inherently pessimistic and unrealistic in many
cases. In this work, we show a method to design algorithms around
a weak assumption of better-than-random (BTR) predictions and
show that these algorithms can perform much better in practice
while only ever performing as poorly as if we had no prediction
in the worst case. We believe this prediction model to be a more
realistic and practical methodology.
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1 INTRODUCTION
Multiple works have been able to use predictions to great effect in
algorithm design [3]. They have found a particular home in online
algorithms for their natural ability to help predict the unknown
future of such problems. Inherent in the use of such predictions are
two major components:

(1) Decision of what to predict (and when) [1][2]
(2) Assumptions about the fallibility of the prediction.

In many cases, the latter can inform the former and we see that
differences in this assumption can lead not only to different results
but also fundamentally different approaches to algorithm design. In
this work, we will explore one such assumption about the second
component with an emphasis on the practicality of the prediction
model in real-world applications.
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1.1 Previous Works
Before explaining our prediction model, we briefly review some of
the existing models.

• Advice model: The advice model is the earliest and most
theoretical model, which assumes that the predictions are
perfect and reliable. This assumption is obviously not practi-
cal but is useful in finding lower bounds on the amount of
information needed for certain performance ratios [3, 4, 11].

• Predictions with unbounded error: Under this model, the
predictions may have any error and are considered to be ad-
versarial in the worst case. Designing algorithms under this
model will minimize the impact of adversarial predictions
(Robustness) but is extremely pessimistic and will fail to use
predictions as well as possible in cases where we can reliably
trust them (Consistency), this [6, 10].

• Predictions with bounded error: This model assumes
that the error (generally the L1 distance) of the prediction
is bounded by some value, 𝐻 . The competitive ratio is then
computed as a function of𝐻 . It is, however, difficult to justify
this parameter 𝐻 and designing algorithms around this as-
sumption still requires minimizing the impact of adversarial
cases if generalizing for all values of 𝐻 . [8]

• Randomly Infused Advice: Under this model, the predic-
tion is considered perfect, but with some probability, say 𝑝 ,
each bit of the prediction may be set randomly. Therefore, in
the worst case, the prediction becomes a completely random
sequence rather than an adversarial one, and this is more
realistic in practice. This model does, however, gives extra
power to the algorithms in terms of random bits, which can
be helpful on their own. In particular, this allows designing
predictions with error correction bits, which gives impracti-
cal lower bounds [5].[7]

Attempts to incorporate prediction models into real applications
have enhanced the underlying assumptions to become more re-
alistic over time. Yet, the existing models are either difficult to
implement in practice or do not make the best use of the general
reliability of predictions.

2 BETTER-THAN-RANDOM PREDICTIONS
In our prediction model, we build over previous works and take one
step further toward practicality. Like the randomly infused advice,
our predictor model performs randomly in the worst case (and not
adversarially), and like many existing results, we use the L1 distance
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to quantify the prediction error. Together, these assumptions yield
our notion of Better-Than-Random (BTR) Predictions.

We consider a prediction that is made about a value in a bounded
range (𝑚,𝑀). Let 𝑦 denote the true value. A prediction 𝑦 is called a
BRT prediction if it satisfies

|𝑦 − 𝑦 | ≤ E[|𝑦 − 𝑌 |], (1)

where 𝑌 ∈ (𝑚,𝑀) is a random prediction that will be specified
based on problems (e.g., 𝑌 = 𝑈 (𝑚,𝑀) is a uniform random variable
in the cow-path problem).

This assumption is very weak and is expected to hold in practical
application. A machine-learned method that regularly violates this
assumptionwould likely be identified and discarded before attempts
to use it in any practical way.

Performance metrics. Since we will be focusing on online algo-
rithms, we evaluate the performance of algorithms by a prediction-
augmented competitive ratio (CR). Let Ω denote the set of instances
that satisfy the BTR prediction (1). Then for aminimization problem,
the prediction-augmented CR is defined as

CR𝑏 = max
𝐼 ∈Ω

ALG(𝐼 )
OPT(𝐼 ) , (2)

which is the worst-case ratio between the cost of the algorithm (i.e.,
ALG(𝐼 )) and that of an optimal offline algorithm (i.e., OPT(𝐼 )) across
all instances in Ω. Note that Ω is a subset of the instances of original
online problems. Thus, CR𝑏 is no larger than the conventional worst-
case optimized CR. This work is to investigate (i) how to leverage
BTR predictions in algorithmic design and (ii) when BTR predictions
are useful in terms of improving CR𝑏 .

3 TOY EXAMPLE: COW-PATH PROBLEM
We used our prediction model to design and test algorithms for a
few problems. Here, we briefly review the algorithm and results
on a restricted variant of the one-dimensional search problem,
which we call the bounded cow-path problem. Though this is a toy
problem, it demonstrates how algorithms must be designed under
our prediction model.

3.1 Bounded Cow Path
The problem is defined as follows: There exists a “cow" at the origin,
and an unknown target value 𝑦 ∈ (−𝑀,𝑀) for a known value 𝑀 .
Starting at 0, the cow moves back and forth in search of the target
value; it finds the target if it reaches the position 𝑦 on the line
segment (−𝑀,𝑀). The objective is to move the cow in a way to
minimize the total distance it travels until it finds the target. The
optimal offline cost is themagnitude of𝑦. The optimal, deterministic,
online algorithm with no prediction for this problem is a doubling
strategy that alternately moves powers of two on either side. This
approach has a competitive ratio of 9 [9].

3.2 Algorithm with BTR Predictions
We begin by computing E[|𝑦−𝑈 (−𝑀,𝑀) |], giving us the following:

E[|𝑦 −𝑈 (−𝑀,𝑀) |] =
(
𝑀 − 𝑦

2𝑀
· 𝑀 − 𝑦

2

)
+
(
𝑀 + 𝑦
2𝑀

· 𝑀 + 𝑦
2

)
=

𝑦2

2𝑀
+ 𝑀

2
.

Given the BTR prediction 𝑦, we can estimate the possible ranges of
the true position

𝑦 ∈
{
(−𝑀,𝑀 −

√︁
−2𝑀𝑦) 𝑦 ∈ (−𝑀, 0]

(−𝑀 +
√︁
2𝑀𝑦,𝑀) 𝑦 ∈ (0, 𝑀)

. (3)

From this, we can realize that a prediction with good enough magni-
tude, specifically |𝑦 | ≥ 𝑀

2 , will tell us the direction from the origin
where the target is located, and hence we can solve the problem
optimally by moving the cow on the right direction. On the other
hand, when |𝑦 | < 𝑀

2 , we have a reduced range of possible positions
for the target. This allows us to choose a starting side of the dou-
bling algorithm to minimize the likelihood of a very high cost ratio.
This will decrease the expected cost ratio, but won’t improve on
the competitive ratio in the worst case.

3.3 Experimentation
To test our algorithm, we used uniformly random cow positions
and predictions generated either from a uniform distribution over
the range allowed by the assumption or a normal distribution with
a mean equal to𝑦, and standard deviation equal to the random error
bound 𝐻 divided by 3. We ran this test over different magnitudes
of 𝑀 up to 108 and averaged over 10,000 tests for each order of
magnitude. We found that the average performance ratio of our al-
gorithm was around 3.3 for both methods of generating predictions.
This was consistent over every order of magnitude and significantly
better compared to the competitive ratio of 5.2 of the purely online
algorithm (without prediction). This is to be expected, but we be-
lieve that this is evidence that designing an algorithm around this
assumption can give better empirical performance without fear of
adversarial cases causing issues, at least in these toy problems.
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