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1 PROBLEM FORMULATION
We study a novel MDP problem called Anytime-CompetitiveMarkov Decision Process (A-CMDP). In
A-CMDP, each episode has𝐻 rounds. The state at each round is denoted as 𝑥ℎ ∈ X, ℎ ∈ [𝐻 ]. At each
round of an episode, the agent selects an action 𝑎ℎ from an action setA. The environment generates
a reward 𝑟ℎ (𝑥ℎ, 𝑎ℎ) and a cost 𝑐ℎ (𝑥ℎ, 𝑎ℎ) with 𝑟ℎ ∈ R and 𝑐ℎ ∈ C. We model the dynamics as
𝑥ℎ+1 = 𝑓ℎ (𝑥ℎ, 𝑎ℎ) where 𝑓ℎ ∈ F is a random transition function drawn from an unknown distribution
𝑔(𝑓ℎ) with the density 𝑔 ∈ G. The agent has no access to the random function 𝑓ℎ but can observe
the state 𝑥ℎ at each round ℎ. Thus, the state transition model can be expressed as P(𝑥ℎ+1 | 𝑥ℎ, 𝑎ℎ) =∑

𝑓ℎ
1(𝑓ℎ (𝑥ℎ, 𝑎ℎ) = 𝑥ℎ+1)𝑔(𝑓ℎ). Let 𝑉 𝜋

ℎ
(𝑥) = E

[∑𝐻
𝑖=ℎ

𝑟𝑖 (𝑥𝑖 , 𝑎𝑖 )) | 𝑥ℎ = 𝑥
]
denote the expected value

of the total reward from roundℎ by a policy 𝜋 . One objective of A-CMDP is to maximize the expected
total reward starting from the first round which is denoted as E𝑥1

[
𝑉 𝜋
1 (𝑥1)

]
= E

[∑𝐻
ℎ=1 𝑟ℎ (𝑥ℎ, 𝑎ℎ))

]
.

Besides A-CMDP guarantees the anytime competitive cost constraints compared with a policy
prior 𝜋†. Denote 𝑦ℎ = (𝑓ℎ, 𝑐ℎ, 𝑟ℎ), and 𝑦1:𝐻 = {𝑦ℎ}𝐻ℎ=1 ∈ Y = F × R × C is a sampled sequence. For
any round ℎ in any model sequence 𝑦1:𝐻 ∈ Y, the anytime competitive constraints require that
𝐽𝜋
ℎ
(𝑦1:𝐻 ) ≤ (1 + 𝜆) 𝐽𝜋†

ℎ
(𝑦1:𝐻 ) + ℎ𝑏. where 𝐽𝜋ℎ (𝑦1:𝐻 ) =

∑ℎ
𝑖=1 𝑐𝑖 (𝑥𝑖 , 𝑎𝑖 ) be the cost up to round ℎ ∈ [𝐻 ]

with states 𝑥𝑖 , 𝑖 ∈ [ℎ] and actions 𝑎𝑖 , 𝑖 ∈ [ℎ] of a policy 𝜋 , and parameters are 𝜆 ≥ 0 and 𝑏 ≥ 0. The
objective of A-CMDP is

max
𝜋∈Π
E𝑥1

[
𝑉 𝜋
1 (𝑥1)

]
, 𝑠 .𝑡 . 𝐽𝜋

ℎ
(𝑦1:𝐻 ) ≤ (1 + 𝜆) 𝐽𝜋†

ℎ
(𝑦1:𝐻 ) + ℎ𝑏, ∀ℎ ∈ [𝐻 ],∀𝑦1:𝐻 ∈ Y . (1)

Assumption 1.1. The cost functions have a minimum value 𝜖 ≥ 0, i.e. ∀(𝑥, 𝑎),∀ℎ ∈ [𝐻 ], 𝑐ℎ (𝑥, 𝑎) ≥
𝜖 ≥ 0, and are 𝐿𝑐 -Lipschitz continuous. The transition functions are 𝐿𝑓 -Lipschitz continuous. The
parameters 𝜖, 𝐿𝑐 and 𝐿𝑓 are known to the agent.

Assumption 1.2. The prior policy 𝜋† is Lipschitz continuous and satisfies the telescoping property,
i.e. if 𝜋† is applied from round ℎ1 to ℎ2 with initialized states 𝑥ℎ1 and 𝑥 ′ℎ1

, it holds at round ℎ2 that
∥𝑥ℎ2 − 𝑥 ′ℎ2

∥ ≤ 𝑝 (ℎ2 − ℎ1)∥𝑥ℎ1 − 𝑥 ′ℎ1
∥, where 𝑝 (ℎ) is a perturbation function with 𝑝 (0) = 1.

This extended abstract summarizes the paper [1].
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2 Trovato et al.

2 MAIN RESULTS
First, we propose an Anytime-Competitive Decision-making (ACD) algorithm to provably guarantee
the anytime competitive constraints for each episode. The key idea to satisfy the anytime competitive
constraints is a projection to a safe action set Aℎ (𝐷ℎ) in each round. The design of the safe action
set has the following two challenges. First, since in MDPs, the agent can only observe the real states
{𝑥ℎ}𝐻ℎ=1 corresponding to the truly-selected actions {𝑎ℎ}𝐻ℎ=1, the agent cannot evaluate the prior
cost 𝐽𝜋†

ℎ
in the anytime competitive constraint at each round ℎ. Second, The impacts of the actions

on future costs are based on random transition models 𝑓𝑖 . Thus, besides satisfying the constraints
in the current round, we need to have a good planning for the future rounds to avoid any possible
constraint violations without the exact knowledge of transition and/or cost models. To address
the challenges, we derive a sufficient condition for the satisfaction of the anytime competitive
constraints. We prove that (𝜆,𝑏)−anytime competitive constraints are satisfied if it holds at each
round ℎ that

Γℎ,ℎ ∥𝑎ℎ − 𝜋† (𝑥ℎ)∥ ≤ 𝐷ℎ, (2)
where𝐷1 = 𝜆𝜖+𝑏,𝐷ℎ = max

{
𝐷ℎ−1 + 𝜆𝜖 + 𝑏 − Γℎ−1,ℎ−1𝑑ℎ−1, 𝑅ℎ−1 + 𝜆𝜖 + 𝑏

}
is the allowed deviation

at round ℎ, and the parameters are calculated as Γ𝑗,𝑛 =
∑𝐻

𝑖=𝑛 𝑞 𝑗,𝑖 , ( 𝑗 ∈ [𝐻 ],∀𝑛 ≥ 𝑗), with 𝑞 𝑗,𝑖 =
𝐿𝑐1( 𝑗 = 𝑖)+𝐿𝑐 (1+𝐿𝜋† )𝐿𝑓 𝑝 (𝑖−1− 𝑗)1( 𝑗 < 𝑖), (∀𝑗 ∈ [𝐻 ], 𝑖 ≥ 𝑗),𝑅ℎ−1 =

∑ℎ−1
𝑖=1

(
(1 + 𝜆)𝑐†

𝑖
− 𝑐𝑖 − Γ𝑖,ℎ𝑑𝑖

)
,

𝑐
†
𝑖
= max

{
𝜖, 𝑐𝑖 −

∑𝑖
𝑗=1 𝑞 𝑗,𝑖𝑑 𝑗

}
, (∀𝑖 ∈ [𝐻 ]).

Then, we develop a new RL algorithm (ACRL) to optimize the average reward while satisfying
the anytime competitive constraints. The anytime constrained inference ACD actually define a
new MDP where it is the projected action instead of the ML output that directly interact with the
environment. Thus, we design a model-based RL framework which learns the dynamic distribution
𝑔 by interacting with the new environment defined by ACD. At each inference, the policy based on
the learned dynamic distribution is projected to meet the constraints in (2) which further leads to
the satisfaction of the anytime constraints.
We rigorously prove that the anytime competitive constraints are satisfied, and analyze the

reward regret of ACRL compared with the optimal-unconstrained policy.

Theorem 2.1. The (𝜆,𝑏)−anytime competitive constraints are satisfied if (2) holds for each round ℎ.

Theorem 2.2. Assume that the optimal-unconstrained policy 𝜋∗ has a value function𝑄𝜋∗

ℎ
(𝑥, 𝑎) which

is 𝐿𝑄,ℎ-Lipschitz continuous with respect to the action 𝑎 for all 𝑥 . The regret between the optimal ACD
policy and the optimal-unconstrained policy 𝜋∗ is bounded as

E𝑥1

[
𝑉 𝜋∗
1 (𝑥1) −𝑉 𝜋◦

1 (𝑥1)
]
≤ E𝑦1:𝐻

{
𝐻∑︁
ℎ=1

𝐿𝑄,ℎ

[
𝜂 − 1

Γℎ,ℎ
(𝜆𝜖 + 𝑏 + Δ𝐺ℎ)

]+}
, (3)

where 𝜂 = sup𝑥∈X ∥𝜋∗ (𝑥) − 𝜋† (𝑥))∥ is the maximum action discrepancy between the policy prior 𝜋†

and optimal-unconstrained policy 𝜋∗, and Δ𝐺ℎ = [𝑅ℎ−1]+.

The analysis shows that there exists a fundamental trade-off between the optimization of the
average reward and the satisfaction of the anytime competitive constraints. We further bound
the regret of ACRL comparing against the optimal policy, which shows the ACD policy performs as
asymptotically well as the optimal ACD policy as episode number 𝐾 → ∞.
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