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Towards a Learning-Only Approach for Non-Convex Sum-Rate Maximization
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In this study, we try to further improve optimality of non-convex optimization problems by exploringmachine learning-only approaches.
We propose a general framework We introduce several white-box models within black-box neural networks to enhance learning
efficiency and achieve iteration-free implementation. We evaluate the accuracy and efficiency of the proposed model using simulated
data of varying magnitudes. Our model outperforms all other learning-only state-of-the-art (SOTA) approaches and achieves faster
inference speeds than other learning-augmented SOTAs.

1 INTRODUCTION

Optimization Problem. This study investigates a classical non-convex optimization problem in wireless communica-
tion, namely the sum-rate maximization problem [5] (WMMSE paper). Our goal is to solve the following maximization
problem to reduce interference between users in shared frequency subcarriers. Specifically, we consider a cellular
network comprising of B base stations (BS) each with Nt transmitting antennas. Each base station serves U users (UE),
each equipped with Nr receiving antennas. The channel (coefficient) between UE u and BS b is denoted by matrix Hb,u ,
while the precoding (objective variable) is denoted by matrix Vb,u . We optimize each precoding V with given channels
H and total power P to maximize the sum rate of overall users. Notably, the non-convexity in the objective function is
caused by the inversity of the outer product, which reflects the interference among all users, including intra-BS and
inter-BS interference. As established in [5], this problem is known to be NP-hard.

max
V

B∑
b=1

U∑
u=1

log2 det
INr +

(
Hb,uVb,u

) (
Hb,uVb,u

)H
·


B,U∑

b̃,ũ ;b̃,ũ,b,u

(
Hb̃,uVb̃,ũ

) (
Hb̃,uVb̃,ũ

)H
+ σ 2INr


−1 ,

s.t.
U∑
u=1

Tr
(
Vb,uV

H
b,u

)
≤ P ,b = 1, 2, . . . ,B.

(1)

Numerical Optimization Algorithm. The Weighted Mean-Square Error (WMMSE) algorithm [5] is a widely employed
iterative numerical algorithm for problem (1). Specifically, WMMSE formulates a dual problem with two auxiliary
variables, making it numerically solvable by applying a blocked coordinate descent algorithm. We benchmark our
method’s performance against WMMSE as the state-of-the-art.

Learning-assisted Algorithms. Many learning-augmented approaches have been developed based on WMMSE [1, 2],
achieving optimality levels around 90% with a fixed number of iterations. They are, however, limited by WMMSE’s
constraints. First, there is no robustness guarantee as WMMSE requires random initialization. Although the latest
version of WMMSE [6] suggests using Zero-Forcing with SVD decomposition, it remains non-deterministic. Second,
the optimality of these approaches is upper-bounded by WMMSE by nature.

In response to the limitations above, learning-only methods have also been studied recently [3, 4]. Nonetheless, most
of them simplify the problem in (1) to a rudimentary power allocation problem on scalar variables. Their performance
is inadequate for the original optimization scenario. We aim to advance this approach by exploring its potential beyond
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Fig. 1. Cumulative Distribution Function of Optimal Objective Values Across Varied
Inter-Cell Interference Scenarios. Left: Small Interference. Right: Large Interference.

Table 1. Comparing Percentage of Optimal
Objective Value to WMMSE across Differ-
ent Scales of Matrix Variables (Columns,
(Small (8 8-by-2), Moderate (16 16-by-2),
and Large (32 32-by-2)) on Varied Inter-Cell
Interference Scenarios (Rows).

Small Moderate Large
Small 95.6% 96.5% 93%
Large 95.3% 95.5% 91.5%

the current scope. As will be shown soon, our learning-only method outperforms all existing work in this category, and
offers comparable optimality and efficiency to learning-augmented algorithms.

2 PRELIMINARY DESIGN AND EVALUATION

Structural Learning Framework. We aim to improve the sum-rate performance by emulating the first-order derivative
condition in WMMSE through a neural network model. WMMSE derives a local optimum as an inverse matrix dot-
product with a coefficient column vector. Our approach interprets the inverse matrix as a non-unitary ‘basis’ and
the coefficient vector as a corresponding coefficient. We propose a learning framework to construct these bases and
coefficients. Similar to other SOTAs [2, 3], we utilize a fixed number of iterative procedures within neural networks,
which significantly reduces model size. Further, our model incorporates pooling techniques and message-passing
networks, making it scalable to different scenario scales.

Virtual Variables. It is widely recognized that when the number of rows of the matrix V is greater than or equal to
Nr ×Ub × B, the problem (1) can be solved using singular value decomposition [5]. This implies that when the number
of transmitting antennas is sufficiently large, all interference can be eliminated. For learning efficiency, we employ a
learnable parameter matrix to linearly construct virtual high-dimensional variables that map to solvable dimensions.
The linearity of this approach preserves all inner product directions in (1) and also enables the retrieval of the original
variable from the inner product with the Hermitian of the parameter matrix.

We comprehensively evaluate our proposed framework in simulated scenarios of varying scales, i.e., small, moderate,
and large scenarios, with eight, sixteen, and thirty-two variables arranged on 8-by-2, 16-by-2, and 32-by-2 matrix spaces.
The number of parameters was scaled accordingly for each scenario. The number of parameters was scaled accordingly
for each scenario. We followed the method outlined in WMMSE [5] for all other configurations. Additionally, we
introduce a scenario with significant inter-cell interference. Currently, our results demonstrate over 90% optimality
compared to WMMSE. The outcomes of our evaluation are assessed using randomly generated testing data, and the
results are presented in Figure 1 and Table 1.
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