
Learning for Edge-Weighted Online Bipartite Matching with
Robustness Guarantees
PENGFEI LI, University of California, Riverside
JIANYI YANG, University of California, Riverside
SHAOLEI REN, University of California, Riverside

ACM Reference Format:
Pengfei Li, Jianyi Yang, and Shaolei Ren. 2023. Learning for Edge-Weighted Online Bipartite Matching with
Robustness Guarantees. 1, 1 (May 2023), 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 PROBLEM FORMULATION
In this extended abstract, we discuss our recent work [1] that uses reinforcement learning to
solve edge-weighted online bipartite matching with robustness guarantees. Edge-weighted online
bipartite matching is a classic online problem with numerous applications, including scheduling
tasks to servers, displaying advertisements to online users, recommending articles/movies/products,
among many others. The agent matches items (a.k.a. vertices) between two setsU andV to gain
as high total rewards as possible. Suppose that U is fixed and contains offline items 𝑢 ∈ U, and
that the online items 𝑣 ∈ V arrive sequentially: in each time slot, an online item 𝑣 ∈ V arrives
and the weight/reward information {𝑤𝑢𝑣 | 𝑤𝑢,min ≤ 𝑤𝑢𝑣 ≤ 𝑤𝑢,max, 𝑢 ∈ U} is revealed, where𝑤𝑢𝑣

represents the reward when the online item 𝑣 is matched to each offline 𝑢 ∈ U. We denote one
problem instance by G = {U,V,W}, whereW = {𝑤𝑢𝑣 | 𝑢 ∈ U, 𝑣 ∈ V}. We denote 𝑥𝑢𝑣 ∈ {0, 1}
as the matching decision indicating whether 𝑢 is matched to 𝑣 . Also, any offline item 𝑢 ∈ U can be
matched up to 𝑐𝑢 times, where 𝑐𝑢 is essentially the capacity for offline item 𝑢 known to the agent in
advance. The goal is to maximize the total collected reward

∑
𝑣∈V,𝑢∈U 𝑥𝑢𝑣𝑤𝑢𝑣 . With a slight abuse

of notations, we denote 𝑥𝑣 ∈ U as the index of item inU that is matched to item 𝑣 ∈ V . The set of
online items matched to 𝑢 ∈ U is denoted as V𝑢 = {𝑣 ∈ V | 𝑥𝑢𝑣 = 1}.

For better presentation, we focus on the no-free-disposal setting, while the free-disposal setting
is also studied in [1]. Specifically, the offline problem with no free disposal can be expressed as:

max
∑︁

𝑥𝑢𝑣 ∈{0,1},𝑢∈U,𝑣∈V
𝑥𝑢𝑣𝑤𝑢𝑣, s.t.,

∑︁
𝑣∈V

𝑥𝑢𝑣 ≤ 𝑐𝑢, and
∑︁
𝑢∈U

𝑥𝑢𝑣 ≤ 1,∀𝑢 ∈ U, 𝑣 ∈ V

where the constraints specify the offline item capacity limit and each online item 𝑣 ∈ V can
only be matched up to one offline item 𝑢 ∈ U. Given an online algorithm 𝛼 , we use 𝑓 𝛼𝑢 (G) to
denote the total reward collected for offline item 𝑢 ∈ U, and 𝑅𝛼 (G) = ∑

𝑢∈U 𝑓 𝛼𝑢 (G) to denote the
total collected reward. We aim to maximize the average reward subject to worst-case robustness
guarantees for each problem instance as formalized below:

maxEG [𝑅𝛼 (G)] , s.t. 𝑅𝛼 (G) ≥ 𝜌𝑅𝜋 (G) − 𝐵, ∀G,
where the expectation EG [𝑅𝛼 (G)] is over the randomness G = {U,V,W}.

2 ALGORITHM
To guarantee robustness (i.e., 𝜌-competitive against a given expert for any 𝜌 ∈ [0, 1]), we propose

a novel algorithm called LOMAR. Our key novelty is the design of a robust constraint which serves as

Authors’ addresses: Pengfei Li, University of California, Riverside; Jianyi Yang, University of California, Riverside; Shaolei
Ren, University of California, Riverside.

2023. XXXX-XXXX/2023/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Li et al.

Algorithm 1 Inference of Robust Learning-based Online Bipartite Matching (LOMAR)
Require: Competitiveness constraint 𝜌 ∈ [0, 1] and 𝐵 ≥ 0
1: for 𝑣 = 1 to |V| do
2: Run the expert 𝜋 and get expert’s decision 𝑥𝜋𝑣 .
3: If 𝑥𝜋𝑣 ≠ skip: V𝜋

𝑥𝜋
𝑣 ,𝑣

= V𝜋
𝑥𝜋
𝑣 ,𝑣−1

⋃{𝑣},
𝑅𝜋
𝑣 = 𝑅𝜋

𝑣−1 +𝑤𝑥𝜋
𝑣 ,𝑣 .

//Update the virtual decision set and reward of the expert
4: 𝑠𝑢 = 𝑤𝑢𝑣 − ℎ\ (𝐼𝑢,𝑤𝑢𝑣), ∀𝑢 ∈ U

//Run RL model to get score 𝑠𝑢 with history information 𝐼𝑢
5: 𝑥𝑣 = argmax𝑢∈U𝑎

⋃{skip}
{
{𝑠𝑢}𝑢∈U𝑎

, 𝑠skip
}
, with 𝑠skip = 0 and U𝑎 =

{
𝑢 ∈ U | |V𝑢,𝑣−1 | < 𝑐𝑢

}
.

//Get RL decision 𝑥𝑣
6: if Robust constraint in (1) is satisfied then
7: Select 𝑥𝑣 = 𝑥𝑣 . //Follow RL
8: else if 𝑥𝜋𝑣 is available (i.e., |V𝑥𝜋

𝑣 ,𝑣−1 | < 𝑐𝑥𝜋
𝑣
) then

9: Select 𝑥𝑣 = 𝑥𝜋𝑣 . //Follow the expert
10: else
11: Select 𝑥𝑣 = skip.
12: end if
13: If 𝑥𝑣 ≠ skip, V𝑥𝑣 ,𝑣 = V𝑥𝑣 ,𝑣−1

⋃{𝑣},
𝑅𝑣 = 𝑅𝑣−1 +𝑤𝑥𝑣 ,𝑣 .
//Update the true decision set and reward

14: end for

the condition for online switching. Specifically, by assigning more online items to 𝑢 ∈ U than the
expert algorithm at step 𝑣 , LOMAR can possibly receive a higher cumulative reward than the expert’s
cumulative reward. But, such advantages are just temporary, because the expert may receive an
even higher reward in the future by filling up the unused capacity of item 𝑢. Thus, to hedge against
the future uncertainties, LOMAR chooses the RL decisions only when the following condition is
satisfied:

𝑅𝑣−1 +𝑤�̃�𝑣 ,𝑣 ≥ 𝜌

(
𝑅𝜋
𝑣

∑︁
𝑢∈U

(
|V𝑢,𝑣−1 | − |𝑉 𝜋

𝑢,𝑣 | + I𝑢=�̃�𝑣
)+ ·𝑤𝑢,max

)
−𝐵, (1)

where I𝑢=�̃�𝑣 = 1 if and only if 𝑢 = 𝑥𝑣 and 0 otherwise, (·)+ = max(·, 0), 𝜌 ∈ [0, 1] and 𝐵 ≥ 0 are the
hyperparameters indicating the desired robustness with respect to the expert algorithm 𝜋 .
We prove that LOMAR guarantees robustness in terms of 𝜌-competitiveness against any given

expert online algorithms for any 𝜌 ∈ [0, 1]. To improve the average performance of LOMAR, we also
train the RL policy in LOMAR by explicitly taking into account the introduced switching operation.
Importantly, to avoid the “no supervision” trap during the initial RL policy training, we propose to
approximate the switching operation probabilistically. We also extend LOMAR to the free-disposal
setting where each offline item 𝑢 ∈ U can be matched more than 𝑐𝑢 times but only the top 𝑐𝑢
rewards are counted when more than 𝑐𝑢 online items are matched to 𝑢. Finally, we offer empirical
experiments to demonstrate that LOMAR can improve the average cost (compared to existing expert
algorithms) as well as lower the competitive ratio (compared to pure RL-based optimizers).

REFERENCES
[1] Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness

guarantees. In ICML, 2023.

, Vol. 1, No. 1, Article . Publication date: May 2023.

	1 Problem Formulation
	2 Algorithm
	References

