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ABSTRACT
In the critical problem of energy generation scheduling for micro-
grids, one needs to decide when to switch energy supply between
a cheaper local generator with startup cost and the costlier on-
demand external grid, considering intermittent renewable genera-
tion and fluctuating demands. In this paper, we exploit the struc-
ture of information in the prediction window to design a novel
prediction-aware online algorithm that makes more competitive
decisions. Our algorithm achieves the best competitive ratio to date
for this important problem, which is at most 3 − 2/(1 + O( 1

𝑤 )),
where𝑤 is the prediction window size. This competitive ratio keeps
decreasing as the window size increases, and it is upper bounded by
a constant that is independent of the start-up cost. We also charac-
terize a non-trivial lower bound of the competitive ratio and show
that the competitive ratio of our algorithm is only 9% away from
the lower bound, when a few hours of prediction is available. Simu-
lation results based on real-world traces corroborate our theoretical
analysis and highlight the advantage of our new design.

1 INTRODUCTION
The advances of machine learning and big data analytics enable
relatively accurate forecasting and provide the missing information
for optimal decision-making in online algorithms. In this paper,
a novel prediction-aware online algorithm is provided for energy
generation scheduling in microgrids that considers a parameterized
prediction window with any window size. While the previous study
[6] focuses on a homogeneous setting of local generators, in this
paper we consider a more general setting where local generators
can be heterogeneous with different capacities.

Our algorithm not only solves the online energy generation
scheduling problem but also paves the way for tackling more gen-
eral Metrical Task System (MTS) problems [1] with limited pre-
dicted information. MTS considers general online decision-making
processes for state changes with uncertain future switching costs
among the states. We note that the online energy generation sched-
uling problem belongs to a class of scalar MTS problems, where
the states are the number of generators being on (or off). However,
there is no prediction-aware online algorithm for MTS in the litera-
ture so far, to the best of our knowledge. We summarize our main
contributions as follows:

(1) We propose CHASEpp as a novel prediction-aware online al-
gorithm that can further improve the competitive ratio of the
state-of-the-art CHASElk. This algorithm achieves competi-
tive ratio of 3−

(
2𝛼+2(1−𝛼)/(1+O( 1

𝑤 )
)
≤ 3−2/(1+O( 1

𝑤 )),
where 𝛼 ∈ [0, 1] is the system parameter that captures price
discrepancy between using local generation and external
sources to supply energy. Our algorithm achieves the best
competitive ratio to date with up to 20% improvement than

Reference Structure
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Competitive
Ratio

Lower
Bound

Heterogeneous
Generators

Lin et al. [5] ✗ arbitrarily large (in a
more general setting)

✗ ✗

Hajiesmaili et al.
[2]

✗ heuristic ✗ ✗

Lu et al. [6] ✗ sub-optimal (partial
use of the information)

✗ ✗

Menati et al.
[7]

✓ reduces twice faster
than [6] with 𝑤

✓ ✓

Table 1: Summary and comparison of existing works.

the state-of-the-art CHASElk. This competitive ratio also
decreases twice faster with respect to𝑤 than CHASElk.

(2) We explore a new design space in our algorithm called cu-
mulative differential cost in the prediction window, to better
utilize the prediction information in making more competi-
tive decisions.We also characterize a non-trivial lower bound
of the competitive ratio, and show that the competitive ratio
of our algorithm is close to the lower bound. For example,
they only differ by 9% (i.e., 1.94 vs. 1.75) when we have a few
hours of predictions.

2 RELATEDWORK
In recent years, online convex optimization (OCO) has emerged as
a foundational topic in a variety of computer systems. There are
some similarities between OCO with switching costs for dynamic
scaling in datacenters [4] and the one of energy generation [7].
However, the inherent structures of both problems and solutions
are significantly different. In their recent work [5], the competitive
ratio increases linearly by increasing the switching cost, while our
algorithm’s competitive ratio is always upper bounded by a con-
stant that is independent of the switching cost [7]. Other prediction-
aware online algorithms like the one in [3] also produce competitive
ratios that grow unbounded as the switching cost increases. Some
recent works [8] tried to solve this issue by designing online algo-
rithms with bounded competitive ratios. Still, their algorithm can
only leverage prediction for large enough window sizes 𝑤 ≥ 𝑟𝑐𝑜 ,
where 𝑟𝑐𝑜 is a constant that grows unbounded as the switching
cost increases. Meanwhile, the competitive ratio of our algorithm
always keeps decreasing as the window size increases.

In [6], a competitive algorithm design approach is used to solve
the problem of energy generation scheduling in microgrids, and in
[2] a randomized online algorithm is proposed to solve this problem.
In [6], a prediction-aware online algorithm has been proposed to
this end, but it fails to utilize all the given predicted information.
Here we propose a novel competitive online algorithm that will
further improve both theoretical and practical performance over
the previous algorithm. There are several aspects, both in algorithm
design and theoretical analysis, that make our work different from
other online solutions. We compare the most important aspects of
these works and our work in Table 1.



Figure 1: An example of Δ(𝑡 ) and the online algorithms CHASE,
CHASElk, and CHASEpp. The prediction-aware online algorithms
detect the segment type 𝑤 time slots before CHASE.

3 ALGORITHM DESIGN
We first review state-of-the-art online solutions and the optimal of-
fline solution, providing the necessary understanding for designing
a new algorithm later. In the offline setting, we define

𝛿 (𝑡) ≜ 𝜓 (𝜎 (𝑡), 0) −𝜓 (𝜎 (𝑡), 1), 𝑎𝑛𝑑 (1)

Δ(𝑡) ≜ min
{
0,max{−𝛽,Δ(𝑡 − 1) + 𝛿 (𝑡)}

}
, (2)

where 𝛿 (𝑡) captures the single-slot cost difference between using or
not using the local generation. When 𝛿 (𝑡) > 0 (resp. 𝛿 (𝑡) < 0), we
tend to turn on (resp. off) the generator. To avoid turning on/off the
generator too frequently, the cumulative cost difference Δ(𝑡) is also
defined, where 𝛽 is the start up cost of the generator. Using Δ(𝑡), we
divide the time horizon T into several disjoint sets called critical
segments. As shown in Fig. 1, each segment corresponds to an
interval where Δ(𝑡) goes from -𝛽 to 0 (type-1) or from 0 to -𝛽 (type-
2). In the offline setting, we can detect the beginning of each critical
segment right after the process enters them and set 𝑦 (𝑡) as one for
the type-1 segments (turn on the generator) and zero for type-2
segments (turn off the generator). However, in the online setting,
with no future information, it is impossible to do so. So an online
algorithm called CHASE [6] is proposed to track the offline optimal
in an online manner. This algorithm turns on (off) the generator as
soon as it detects that it is already in a type-1 (type-2) segment and
its competitive ratio satisfies CR(CHASE) ≤ 3 − 2𝛼 . A prediction-
aware online algorithm called CHASElk(𝑤) is also proposed, which
behaves similar to the prediction-obliviousCHASE, but it can detect
segment types𝑤 time slots sooner.

In our paper [7], we define a new parameter called cumulative
differential cost in the prediction window Δ𝑡+𝑤𝑡 ≜

∑𝑡+𝑤
𝑠=𝑡 𝛿 (𝑠) that

captures the benefit of using the generator in the coming window.
Our new algorithm called CHASEpp(𝑤) tracks the offline algo-
rithms, checks the cumulative differential cost, and turns on the
generator only if it is larger than a certain threshold ( Δ𝑡+𝑤𝑡 ≥ _).
Unlike CHASElk(𝑤), which simply imitates the offline algorithm in
an online fashion, our new algorithm ensures that there is enough
benefit in turning on the generator for the prediction window.
This new design space helps improve the performance of the on-
line algorithm and achieve the worst-case competitive ratio of
3 −

(
2𝛼 + 2(1 − 𝛼)/(1 + O( 1

𝑤 )
)
≤ 3 − 2/(1 + O( 1

𝑤 ).

Figure 2: CR improvement as a
function of 𝛼 and 𝑤.

Figure 3: Lower bound of CR as
a function of 𝛼 and 𝑤.

Figure 4: Competitive ratio as a
function of 𝑤.

Figure 5: Cost reduction as a
function of 𝑤.

4 NUMERICAL EXPERIMENTS
As shown in Fig. 2, our algorithm improves the competitive ratio by
up to 20%. We also present, for the first time, a lower bound of the
competitive ratio shown in Fig. 3. In Fig. 4, it can be seen that the
competitive ratio of our algorithm is only 9% away from the lower
bound when a few hours of prediction is available. We also use
real-world traces to compare the performance of our algorihtmwith
the optimal offline algorithm OPT, CHASE, CHASElk, CHASEpp,
and RHC, which is a popular algorithm widely used in the control
literature. It can be seen that our algorithm outperforms all other
algorithms and is able to make more competitive online decisions.
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