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ABSTRACT
The online knapsack problem is a classic online resource allocation
problem. Its basic version studies how to pack online arriving items
of different weights and values into a capacity-limited knapsack,
so as to maximize the total value of the admitted items. Prior work
has shown optimal deterministic and randomized algorithms for
this problem – such algorithms have provably good competitive
ratios, but they may treat individual items unfairly or inequitably in
several different ways. In this work, we identify a natural notion of
arrival time fairness previously studied for similar online problems
and motivate its applicability to resource allocation. We extend this
notion of fairness to the context of online knapsack, and show that
existing algorithms perform poorly under this metric.

We propose a parameterized deterministic algorithm where the
parameter precisely captures the Pareto-optimal trade-off between
fairness and competitiveness. We further show that predictions
approximating the lowest value density of an item accepted by an
optimal solution can improve both fairness and competitiveness.
In particular, we derive an algorithm which leverages such predic-
tions for better (competitive) performance, while simultaneously
providing better fairness guarantees when the predictions are trust-
worthy. Our work shows that even relatively simple predictions
can be utilized remarkably effectively to simultaneously improve
the fairness and performance of online algorithms.

1 INTRODUCTION
Achieving basic benchmarks of fairness and equity in algorithmic
approaches to classical problems has become the focus of much
recent research in computer science. To illustrate the importance
of these considerations in the context of the widely-studied online
knapsack problem, it is perhaps best to start with an example.

Example 1.1. Consider a cloud computing resource accepting
heterogeneous jobs online from clients sequentially. Each job in-
cludes a bid that the client is willing to pay, and an amount of
resources required to execute it. The cloud computing resource is
limited; there are not enough resources to service all of the incom-
ing requests. We define the quality of a job as the ratio of the bid
price paid by the client to the quantity of resources required for it.

How do we algorithmically solve the problem posed in Example
1.1? Note that the limit on the resource implies that the problem of
accepting and rejecting items reduces precisely to the online knap-
sack problem. If we only cared about the overall quality of accepted
jobs, we would intuitively be solving the unconstrained online
knapsack problem. However, at the same time, it might be desirable
for an algorithm to apply the same quality criteria to each job that

arrives. As we will see formally in Section 2, existing optimal algo-
rithms for online knapsack do not fulfill this second requirement.
In particular, although two jobs may have a priori identical quality,
the optimal algorithm discriminates between them based on their
arrival time in the online queue: a typical job, therefore, may have a
much higher chance of being accepted if it happens to arrive earlier
rather than later. Preventing these kinds of discriminating choices
while still maintaining competitive standards of overall quality will
form the focus of this work.

2 PRELIMINARIES & FAIRNESS
Problem Formulation. In the online knapsack problem (OKP),

we have a knapsack (resource) with capacity 𝐵 and items arriving
online from an unknown sequence. We denote an instance I of
OKP as a sequence of 𝑛 items, where each item has a value 𝑣 𝑗 and
a weight 𝑤 𝑗 . Formally, I =

[
(𝑣 𝑗 ,𝑤 𝑗 )

]𝑛
𝑗=1. In general, the arrival

sequence of the items in I will correspond to some permutation
𝜋 ∈ S𝑛 . For simplicity, we will keep 𝜋 implicit, and assume that
the 𝑗th item to arrive has value 𝑣 𝑗 and weight 𝑤 𝑗 . The objective
in OKP is to accept items into the knapsack maximizing the sum
of values, while not violating the weight capacity limit of 𝐵. As
is standard in the online setting, at each time step, the algorithm
is presented with an item, and must immediately and irrevocably
decide whether to accept it into the knapsack or reject it.

OKP has been extensively studied under the competitive analysis
framework, where the goal is to design an online algorithm that
maintains a small competitive ratio [2], i.e., performs nearly as well
as the offline optimal solution.

Assumptions and additional notation. We make no assumptions
on the underlying distribution of items other than the assumption
that each online item’s value density {𝑣 𝑗/𝑤 𝑗 } 𝑗∈[𝑛] has bounded
support, i.e., (𝑣 𝑗/𝑤 𝑗 ) ∈ [𝐿,𝑈 ] ∀𝑗 ∈ [𝑛]. We assume 𝐿 and 𝑈 are
known. These are standard assumptions for many online problems,
including OKP, one-way trading, and online search; without them
the competitive ratio of any online algorithm is unbounded [3, 4].
For the rest of this paper, we will assume WLOG that 𝐵 = 1 (we
can scale everything down by a factor of 𝐵 otherwise).

Existing results. Prior work on OKP has resulted in an optimal
deterministic algorithm for the problem setting described above,
shown by Zhou et al. [4]. This seminal algorithm made use of a
framework known as online threshold-based algorithm design. The
algorithm in [4] (henceforth referred to as the ZCL algorithm) is
a deterministic algorithm which achieves a competitive ratio of
ln(𝑈 /𝐿) + 1; [4] also shows that this is the optimal competitive
ratio for any deterministic or randomized OKP procedure. The
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algorithm admits items based on a “growing” threshold function
Φ(𝑧) = (𝑈𝑒/𝐿)𝑧 (𝐿/𝑒), where 𝑧 ∈ [0, 1] is the current knapsack
utilization (i.e. fraction that is filled). The 𝑗th item in the online
sequence is admitted iff 𝑣 𝑗/𝑤 𝑗 ≥ Φ(𝑧 𝑗 ), where 𝑧 𝑗 is the knapsack’s
utilization at the time of the item’s arrival.

Prediction model. Consider receiving a single prediction 𝑣 which
represents a critical value density for the upcoming OKP sequence.
In the rest of this paper we will refer to a naïve algorithm ORACLE,
which simply admits any items with value density ≥ 𝑣 . If this
prediction is accurate, we say that it represents the lowest value
density of any itemwhich would be accepted byOPT, and we would
expect ORACLE to obtain a small competitive ratio against OPT.

3 MAIN RESULTS
Recall that throughout this section, we assume 𝐵 = 1, i.e., the
knapsack has unit capacity.

3.1 Impossibility results for fairness
The introduction had an example of a specific type of time fairness
constraint that was infringed. This concept was explored in the
context of prophet inequalities in [1]. In Example 1.1, it is reasonable
to ask that the probability of an item’s admission into the knapsack
should depend solely on its value density 𝑥 , and not on its arrival
time 𝑗 . We begin by generalizing the definition of Time-Independent
Fairness proposed in [1] to OKP.

Definition 3.1 (Time-Independent Fairness (TIF) for OKP).
An OKP algorithm ALG is said to satisfy TIF if there exists a function
𝑝 : [𝐿,𝑈 ] → [0, 1] such that:

Pr
[
ALG accepts 𝑗 th item in I | 𝑣𝑗 /𝑤𝑗 = 𝑥

]
= 𝑝 (𝑥 ),

∀I ∈ Ω, 𝑗 ∈ [ |I | ], 𝑥 ∈ [𝐿,𝑈 ],
where Ω is the set of all feasible instances.

Stated differently, the probability of admitting an item of value
density 𝑥 depends only on 𝑥 , and not on its arrival time. We start
by noting that the ZCL algorithm does not satisfy TIF.

Observation 3.2. The ZCL algorithm [4] is not TIF, because the
threshold for an item’s admittance changes over time.

In fact, we show that Definition 3.1 is too restrictive for OKP.

Theorem 3.3. Other than the trivial OKP algorithm which rejects
all items, there is no algorithm (deterministic or randomized) for OKP
which guarantees TIF.

Motivated by these results, in Definition 3.4, we present a slightly
revised notion, which relaxes this constraint and narrows the scope
of fairness to consider items which arrive while the knapsack’s
utilization is in some subinterval of the knapsack’s capacity.

Definition 3.4 (𝛼-Conditional Time-Independent Fairness
(𝛼-CTIF) for OKP). For 𝛼 ∈ [0, 1], an OKP algorithm ALG is said to
satisfy 𝛼-CTIF if there exists a subinterval A = [𝑎, 𝑏] ⊆ [0, 1] where
𝑏 − 𝑎 = 𝛼 , and a function 𝑝 : [𝐿,𝑈 ] → [0, 1] such that:

Pr
[
ALG accepts 𝑗 th item in I |

(
𝑣𝑗

𝑤𝑗
= 𝑥

)
∧ (𝑧 𝑗 + 𝑤𝑗 ∈ A)

]
= 𝑝 (𝑥 ),

∀I ∈ Ω, 𝑗 ∈ [ |I | ], 𝑥 ∈ [𝐿,𝑈 ] .

In particular, if 𝛼 = 1, then A = [0, 1], and any item that arrives
while the knapsack still has the capacity to admit it is considered.

3.2 Algorithmic guarantees and trade-offs
Using Definition 3.4, in this section we present algorithms which
satisfy CTIF constraints while remaining competitive and leverag-
ing predictions for better performance. We start with a result that
captures the essence of the trade-offs inherent to this problem.

Theorem 3.5. Any constant threshold-based algorithm for OKP
satisfies 1-CTIF. Furthermore, any constant threshold-based determin-
istic algorithm for OKP cannot be better than (𝑈 /𝐿)-competitive.

We can now extend these results to general values of 𝛼 .

Extended Constant Threshold (ECT). We define a threshold func-
tion Φ𝛼 (𝑧) on the interval 𝑧 ∈ [0, 1], where 𝑧 𝑗 is the knapsack
utilization when the 𝑗th item arrives, and 𝛼 ∈ [1/(ln(𝑈 /𝐿) + 1), 1]
is the fairness parameter. Φ𝛼 is defined as follows:

Ψ𝛼 (𝑧) =
{
𝐿 𝑧 ∈ [0, 𝛼],
𝑈 𝑒𝛽 (𝑧−1) 𝑧 ∈ (𝛼, 1],

(1)

where 𝛽 =
𝑊

(
𝑈 (1−𝛼 )

𝐿𝛼

)
1−𝛼 . Let us call this algorithm . The following

result shows the achieved trade-off between fairness and competi-
tiveness in .

Theorem 3.6. ECT[𝛼] satisfies 𝛼-CTIF. Furthermore, for any in-
stance I ∈ Ω, we have

OPT(I) ≤ ECT[𝛼 ] (I) · 𝑈 [ln(𝑈 /𝐿) + 1]
𝐿𝛼 [ln(𝑈 /𝐿) + 1] + (𝑈 − 𝐿) (1 − ℓ ) .

Thus, ECT[𝛼] is 𝑈 [ln(𝑈 /𝐿)+1]
𝐿𝛼 [ln(𝑈 /𝐿)+1]+(𝑈 −𝐿) (1−ℓ ) -competitive. ECT[𝛼], in

fact, exactly achieves the Pareto-optimal competitiveness trade-off.

We also explore how simple predictions improve both competi-
tiveness and fairness. We propose LA-ECT, which integrates such
predictions.

Prediction Model. Consider an offline approximation algorithm
APX for OKP, which sorts items by non-increasing value density
and packs them in this order. Let 𝑥 ∈ [𝐿,𝑈 ] denote the smallest
value density of any packed item, and 𝑉 is the total value obtained
by APX. Then, if the total value of items with value density 𝑥 in
the knapsack is ≥ 𝑉 /2, define 𝑑★ := 𝑥 . Otherwise, define 𝑑★ := 𝑥+,
where 𝑥+ is the next highest value density in I. We assume that our
algorithm receives a single prediction 𝑑 ∈ [𝐿,𝑈 ] for each instance,
where the prediction is perfect if 𝑑 = 𝑑★.

Learning-Augmented Extended Constant Threshold (LA-ECT). Fix
a trust parameter 𝛾 ∈ [0, 1]. We define the threshold function
Ψ𝛾,𝑑 (𝑧):

Ψ𝛾,𝑑 (𝑧) =


(𝑈𝑒/𝐿)

𝑧
1−𝛾 (𝐿/𝑒) 𝑧 ∈ [0, ^],

𝑑 𝑧 ∈ (^, ^ + 𝛾),
(𝑈𝑒/𝐿)

𝑧−𝛾
1−𝛾 (𝐿/𝑒) 𝑧 ∈ [^ + 𝛾, 1],

(2)

where ^ is the point where (𝑈𝑒/𝐿) (𝑧/1−𝛾 ) (𝐿/𝑒) = 𝑑 . Call the re-
sulting threshold algorithm LA-ECT[𝛾]. The following theorem
characterizes the fairness as well as the trade-off between consis-
tency and robustness for this algorithm.
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Theorem 3.7. LA-ECT[𝛾] satisfies 𝛾-CTIF. Also, for any I ∈ Ω,
• For any accurate prediction 𝑣 ∈ [𝐿,𝑈 ], we haveORACLE(I) ≤

LA-ECT[𝛾] (I) · 𝜚+2𝛾 .
• For any prediction 𝑣 ∈ [𝐿,𝑈 ], we have

OPT(I) ≤ LA-ECT[𝛾] (I) · (1/1 − 𝛾) ln(𝑈 /𝐿) + 1.

Thus, LA-ECT[𝛾] is
(

1
1−𝛾 ln(𝑈 /𝐿) + 1

)
-robust. For most instances,

𝜚 = 𝑂 (1), and so LA-ECT[𝛾] is 𝑂 (1/𝛾)-consistent.
Experiments. We extract real-world item sequences from Google

cluster traces and compare the empirical competitive ratios of the
ZCL algorithm, ECT, and LA-ECT. We test three different regimes
for prediction error, parameterized by 𝜎 ; when 𝜎 = 0, predictions
are perfect.

4 CONCLUSION
We showed impossibility results for the online knapsack problem
under arrival time-based fairness constraints, which led to a natural

definition of time-independent fairness. We then described a deter-
ministic algorithm achieving the optimal trade-off between fairness
and competitiveness. We parameterized this trade-off in a more fine-
grained analysis. Finally, we showed that even a simple prediction
model can simultaneously improve fairness and performance.
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