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ABSTRACT
We consider a decentralized multi-player multi-armed bandit (MP-

MAB) problem where players cannot observe the actions and re-

wards of other players and no explicit communication or coordi-

nation between players is possible. Prior studies mostly focus on

maximizing the sum of rewards of the players over time. However,

the total reward maximization learning may lead to imbalanced

reward among players, leading to poor Quality of Service (QoS)

for some players. In contrast, our objective is to let each player 𝑛

achieve a predetermined average reward over time, i.e., achieving a

predetermined level of QoS. We develop a novel decentralized algo-

rithm to accomplish this objective by leveraging the methodology

of randomized matching, which ensures that all players have an

𝑂 (1) QoS regret. We reveal an analog between our MP-MAB model

and the online wireless queuing systems, which builds a connection

between QoS in MP-MAB learning and stability in queuing theory.
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1 INTRODUCTION
This section introduces our studied problem. We study a stochastic

multi-player game played by a set of 𝑁 players N = {1, ..., 𝑁 }
over a finite time horizon𝑇 . Each player cannot communicate with

other players and faces with a common set of 𝐾 arms denoted by

K = {1, ..., 𝐾}. We assume that 𝐾 ≥ 𝑁 , since otherwise we can

simply add dummy arms with 0 reward. At each round 𝑡 , all players

simultaneously pick one arm to play. We denote by 𝑎𝑛 (𝑡) the arm
that player 𝑛 chooses at round 𝑡 , and the action profile (vector of

arms selected) at round 𝑡 is 𝒂 (𝑡) ∈ [𝐾]𝑁 . Players do not know

which arms the other players chose, and need not even know the

number of players 𝑁 .

Rewards setting.Weassume that, whenmultiple players choose

the same arm, none of them can obtain a reward due to collision. We

denote by 𝜂𝑖 (𝒂) the no-collision indicator of arm 𝑖 with respect to

the action profile 𝒂 such that 𝜂𝑖 (𝒂) = 0 if |N𝑖 (𝒂) | > 1, and 𝜂𝑖 (𝒂) = 1

otherwise, where N𝑖 (𝒂) = {𝑛 | 𝑎𝑛 = 𝑖} is the set of players that

chose arm 𝑖 in action profile 𝒂. Then for each player 𝑛, the instanta-

neous reward of hers at round 𝑡 is 𝑆𝑛𝑡 = 𝑟𝑛,𝑎𝑛 (𝑡 ) (𝑡) · 𝜂𝑎𝑛 (𝑡 ) (𝒂 (𝑡)),
where 𝑟𝑛,𝑎𝑛 (𝑡 ) (𝑡) is a random reward that has a continuous dis-

tribution on [0, 1]. The reward sequence of arm 𝑖 for player 𝑛,
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𝑟𝑛,𝑖 (𝑡)

}𝑇
𝑡=1

, is i.i.d. with an unknown expectation of 𝜇𝑛,𝑖 . We con-

sider the heterogeneous setting where 𝜇𝑛,𝑖 may not equal 𝜇𝑚,𝑖 when

𝑚 ≠ 𝑛. An immediate example for the above collision reward model

is wireless channel allocation, where the transmission of one user

creates interference for other users on the same channel and causes

all transmissions to fail.

Feedback setting. At each round 𝑡 , each player 𝑛 can observe

her reward 𝑆𝑛𝑡 together with the collision indicator 𝜂𝑎𝑛 (𝑡 ) (𝒂 (𝑡)).
This makes sense in the context of cellular networks, as the trans-

mitter can receive an ACK/NACK signal after each transmission,

which can be used to determine if a collision has occurred.

Objective. Unlike most literature on decentralized MP-MAB

[1–3, 7–10] that aims to maximize the total reward (See the latest

survey [4] for reference), our goal is to let every player 𝑛 achieve

at least a target QoS value 𝛾𝑛 , i.e.,

E[𝑆𝑛𝑡 ] ≥ 𝛾𝑛, ∀𝑡 ∈ [𝑇 ], 𝑛 ∈ [𝑁 ], (1)

where the expectation is over the randomness of rewards and policy.

We emphasize that our model is fully decentralized, i.e., every player

cannot communicate with others and use extra information made

by others to make her decisions, and players do not know each

other’s QoS values. Regarding the objective (1), we adopt QoS regret

as our performance metric that defined as follows:

𝑅 (𝑇 ) =
𝑇∑︁
𝑡=1

max

𝑛

(
𝛾𝑛 − E[𝑆𝑛𝑡 ]

)+
, (2)

where (𝑥)+ denotesmax{𝑥, 0}. Ameaningful policy should produce

at least sublinear QoS regret performance, i.e., 𝑅(𝑇 )/𝑇 → 0, and

would be ideal if 𝑅(𝑇 ) = 𝑂 (1), i.e., bounded QoS regret. Of course,

we cannot hope the bounded QoS regret is possible unless there

exists a centralized algorithm that can make such a guarantee.

We thus first understand what conditions the QoS requirements 𝜸
should satisfy for the players to guarantee their QoS requirements

under centralized coordination. Thismotivates defining the capacity

of our MP-MAB game as follows

Δ = max

𝑃 ∈Φ
min

𝑛

( 𝐾∑︁
𝑖=1

𝑃𝑛,𝑖 · 𝜇𝑛,𝑖 − 𝛾𝑛
)
> 0. (3)

If Δ < 0, it means that no matter what the central controller’s

policy is, there exists at least one player whose QoS requirement

𝛾𝑛 is larger than her effective reward rate, and her QoS regret will

grow over time. Indeed, even if Δ = 0, i.e., there exists an 𝑛 such

that 𝛾𝑛 =
∑𝐾
𝑖=1 𝑃𝑛,𝑖𝜇𝑛,𝑖 , the QoS regret still grows over time due to

stochastic fluctuations. Hence, we require Δ > 0 in our model.

1.1 The corresponding queuing systems
Here we reveal that our MP-MAB game behaves like an online

queuing system in wireless networks. The system consists of 𝑁

sources competing for 𝐾 channels to transmit packets to a common

Base Station (BS). At each (discrete) time 𝑡 = 0, 1, . . ., the following

occurs: (a) A new data packet will arrive at the source 𝑛’s queue

with a fixed, time-independent probability 𝛾𝑖 . We model the arrival
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event of time 𝑡 as 𝐴𝑛𝑡 and we have P(𝐴𝑛𝑡 = 1) = 𝛾𝑛, ∀𝑡 . (b) Each
source 𝑛 chooses one channel 𝑎𝑛 (𝑡) ∈ [𝐾] to transmit the first

data packet in her queue. If the queue is empty, she would send a

null/hello packet on her chosen channel (The BS will examine all

received packets and discard null/hello packets). (c) Each channel

𝑖 is unreliable and experiences i.i.d. ON-OFF channel fading. The

probability that the channel 𝑖 between source 𝑛 and BS is ON is 𝜇𝑛,𝑖
at any time. Here 𝜇𝑛,𝑖 is heterogeneous w.r.t the source 𝑛, as the

quality of each channel is often different for different sources in

the cognitive radio context. When more than one source transmits

the packet (including null/hello packet) on the same channel, their

transmission would fail due to the interference. (d) If a data packet

fails to transmit, the source would transmit it again in the next time

until it succeeds. Each source not only receives feedback onwhether

her packet is transmitted successfully at her chosen channel, but

also whether there exists other players choosing the same channel

as she does via ACK/NACK signals, i.e., collision sensing.

We denote 𝑄𝑛 (𝑡) as the number of untransmitted data packets

of source 𝑛 at the beginning of time 𝑡 (before new packet arrives).

Formally, if 𝑆𝑛𝑡 is the event indicator that source 𝑛 clears a packet

at time 𝑡 and 𝐴𝑛𝑡 is again the event indicator source 𝑛 received a

new packet at time 𝑡 , then the dynamics of 𝑄𝑛 (𝑡) is as follows:
𝑄𝑛 (𝑡 + 1) = max{𝑄𝑛 (𝑡 ) +𝐴𝑛𝑡 − 𝑆𝑛𝑡 , 0}, 𝑄𝑛 (0) = 0. (4)

Since coordinating a large number of sources in a centralized

manner is infeasible, decentralized scheduling policies are desir-

able in practice. Hence, a common objective is to design a fully-

decentralized algorithm to guarantee the stability [6] of this queuing

system. The following theorem reveals an analog between our MP-

MAB model and this queuing system, bridging QoS in MP-MAB

learning and stability in queuing theory.

Theorem 1. For ourMP-MAB problem, any algorithm that achieves
sublinear QoS regret can also stabilize the corresponding queuing sys-
tem, wherein all sources follow this algorithm by replacing the arm
pulling with channel selecting.

We remark that the opposite direction of Theorem 1 does not

hold, i.e., the algorithm that achieves stability for the queuing sys-

tem may not guarantee a sublinear QoS regret for our MP-MAB

model. This helps strengthen the significance of our work.

2 ALGORITHMS AND MAIN RESULTS
This section presents the proposed decentralized algorithms, accom-

panied with its performance bounds. We design our decentralized

algorithms by using randomized matching to allocate arms to play-

ers (a round-robin manner), which is a non-standard algorithm in

MP-MAB literature. Here we remark that any randomized matching

policy between players and arms can be characterized by a doubly

stochastic matrix. We denote by B𝐾 the set of doubly stochastic

matrices that belongs to [0, 1]𝐾×𝐾
. To formalize our decentralized

algorithm design, we need some definitions below.

Definition 1. A dominant mapping is a function 𝜙 : R𝑁 ×
R𝐾 → B𝐾 which takes (𝜸 , 𝝁) as input and returns a feasible doubly
stochastic matrix 𝑃 if it exists (and the identity matrix otherwise). We
design the dominant mapping as follows,

𝜙 (𝜸 , 𝝁 ) = arg min

𝑃 ∈B𝐾
max

𝑛∈ [𝑁 ]
− ln

( 𝐾∑︁
𝑖=1

𝑃𝑛,𝑖 · 𝜇𝑛,𝑖 − 𝛾𝑛
)
+ 1

2𝐾
∥𝑃 ∥2

2
. (5)

Our designed dominant mapping ensures that once the esti-

mation error for (𝝁,𝜸 ) is below a threshold, the returned doubly

stochastic matrix 𝑃 can strictly satisfy the QoS requirements of all

players, with a margin of order Δ.

Definition 2. A permutation matrix 𝑃 ∈ [0, 1]𝐾×𝐾 is a square
binary matrix that has exactly one entry of 1 in each row and each
column and 0s elsewhere. Each such matrix represents an one-to-one
matching between players and arms (where we pad with some virtual
players since 𝐾 ≤ 𝑁 ).

Definition 3. A BvN (Birkhoff von Neumann) decomposition
is a function𝜓 : B𝐾 → P(B𝐾 ) that associates to any doubly stochastic
matrix 𝑃 a random variable 𝜓 (𝑃 ) such that E[𝜓 (𝑃 ) ] = 𝑃 ; stated
otherwise, it expresses 𝑃 as a convex combination of permutation
matrices, i.e., there exist 𝜃1, ..., 𝜃𝑚 ≥ 0,

∑𝑚
𝑖=1 𝜃𝑖 = 1,𝑚 = (𝐾 − 1)2 and

permutation matrices 𝑃1, ..., 𝑃𝑚 such that 𝜓 (𝑃 ) = ∑𝑚
𝑖=1 𝜃𝑖𝑃𝑖 .

Informally speaking, those definitions describe the policies play-

ers would follow in the decentralized case: a dominant mapping

gives adequate marginals that ensure zero QoS regret (since each

player 𝑛 obtains in expectation a reward of

∑𝐾
𝑖=1 𝑃𝑛,𝑖 · 𝜇𝑛,𝑖 at each

round, which is larger than 𝛾𝑛 by definition). And a BvN decompo-

sition describes the associated coupling to avoid collisions while

maintainingmarginals. Explicitly, given a common𝜙 (𝜸 , 𝝁 ) , the joint
decentralized strategy for each player is to draw a shared random
variable 𝜔 ∈ R and then choose arms according to the permutation

𝜓 (𝜙 (𝜸 , 𝝁 ) ) (𝜔 ) . We can verify that such strategy can ensure that

players select arms in a collision-free round-robin manner while

satisfying all players’ QoS requirements.

Based on this intuition, our decentralized QoS guaranteeing al-

gorithm, AdeQoS, proceeds in epochs comprising three phases:

exploration, (implicit) communication, and consensus. The explo-

ration phase allows players to obtain enough samples of each arm

to estimate their expected rewards. During the communication

phase, players attempt to infer information about the arm statis-

tics and others’ QoS values through forced collisions. After going

through these two phases, players independently converge to an

identical doubly stochastic matrix, obviating the need for a cen-

tral entity. This allows for collision-free arm selection using BvN

decomposition and shared randomness, making the decentralized

problem resemble the centralized one. The remaining challenge is

to verify if the current doubly stochastic matrix meets all players’

QoS requirements without a central entity, which necessitates a

consensus phase. The consensus phase allows the players, that no

longer believe the current doubly stochastic matrix being played

can satisfy her QoS requirement, signal other players to agree on a

new one via forced collision. Due to the space limit, the complete

pseudocode of AdeQoS and corresponding analysis are provided

in the full paper [5]. Theorem 2 below provides the performance

guarantees for AdeQoS.

Theorem 2. For any Δ > 0, if each player runs AdeQoS then the
QoS regret is bounded:

𝑅 (𝑇 ) ≤ 𝑂 (𝐾3 + 𝑁 3𝐾2 + 𝑁 4𝐾𝑒16/Δ
2/Δ8 ) .

Equipped with Theorem 1, Theorem 2 also implies that the Ade-

QoS can stabilize the corresponding queuing system.
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