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ABSTRACT
We introduce and study a family of online metric problems with long-term

constraints. In these problems, an online player makes decisions x𝑡 in a

metric space (𝑋,𝑑 ) to simultaneously minimize their hitting cost 𝑓𝑡 (x𝑡 )
and switching cost as determined by the metric. Over the time horizon𝑇 ,

the player must satisfy a long-term demand constraint

∑
𝑡 𝑐 (x𝑡 ) ≥ 1, where

𝑐 (x𝑡 ) denotes the fraction of demand satisfied at time 𝑡 . Such problems

can find a wide array of applications to online resource allocation in sus-

tainable energy/computing systems. We devise optimal competitive and

learning-augmented algorithms for specific instantiations of these problems,

and further show that our proposed algorithms perform well in numerical

experiments.

1 INTRODUCTION
This paper introduces and studies a novel class of online metric problems

with long-term demand constraints. Our motivation to introduce these prob-

lems is rooted in an emerging class of carbon-aware control problems for

sustainable systems.

This paper builds on a long line of related work that can be roughly

classified into two types. In the online metric literature, the problem we

study is an extension of convex function chasing (CFC) introduced by Fried-

man and Linial [2], where an online player makes online decisions x𝑡 in a

normed vector space (𝑋, ∥ · ∥ ) over a sequence of time-varying cost func-

tions in order to minimize their total hitting and switching cost. In the

online search literature, the problem we study is a generalization of one-
way trading (OWT) introduced by El-Yaniv et al. [1], in which an online

player must sell an entire asset in fractional shares over a sequence of time-

varying prices while maximizing their profit. Existing prior works [3] that

simultaneously consider long-term demand constraints (as in OWT) and
movement/switching costs (as inCFC) are restricted to unidimensional deci-

sion spaces. Generalizing from the unidimensional case is highly non-trivial;

e.g., in CFL, the problem cannot simply be decomposed over dimensions

due to the shared constraint function and multidimensional switching cost.

In this paper, we obtain results forCFL under problem instantiations that

are especially relevant for our motivating applications. We provide tight

competitive results for CFL in Theorems 3.3 and 3.4. We propose a learning-

augmented algorithm, CLIP (Algorithm 1), and show it achieves the provably

optimal trade-off between consistency and robustness in Theorems 3.7

and 3.8.

The full version of the paper is available at https://arxiv.org/abs/2402.14012.

2 PROBLEM AND PRELIMINARIES
Convex function chasing with a long-term constraint (CFL).
A player chooses decisions x𝑡 ∈ 𝑋 ⊆ R𝑑 online from a normed vector space

(𝑋, ∥ · ∥ ) in order to minimize their total cost

∑𝑇
𝑡=1 𝑓𝑡 (x𝑡 ) +

∑𝑇+1
𝑡=1 ∥x𝑡 −

x𝑡−1 ∥ , where 𝑓𝑡 ( ·) : 𝑋 → R is a convex “hitting” cost that is revealed

just before the player chooses x𝑡 , and ∥x𝑡 − x𝑡−1 ∥ is a switching cost

associated with changing decisions between rounds. Additionally, the player

must satisfy a long term constraint of the form

∑𝑇
𝑡=1 𝑐 (x𝑡 ) = 1, where

𝑐 (x) : 𝑋 → [0, 1] gives the fraction of the constraint satisfied by a decision

x. We denote the utilization at time 𝑡 by 𝑧 (𝑡 ) =
∑𝑡
𝜏=1 𝑐 (x𝜏 ) that gives the

total fraction of the long-term constraint satisfied up to time 𝑡 . The offline

version of CFL can be formalized as follows:

min

{x𝑡 }𝑡 ∈ [𝑇 ]

∑︁𝑇

𝑡=1
𝑓𝑡 (x𝑡 )︸          ︷︷          ︸

Convex hitting cost

+
∑︁𝑇+1

𝑡=1
∥x𝑡 − x𝑡−1 ∥︸                   ︷︷                   ︸

Switching cost

s.t.

∑︁𝑇

𝑡=1
𝑐 (x𝑡 ) ≥ 1,︸                ︷︷                ︸

Long-term constraint

x𝑖𝑡 ∈ [0, 1] ∀𝑖 ∈ [𝑑 ], ∀𝑡 ∈ [𝑇 ] .

Assumptions.We describe the precise variant of CFL for which we design

algorithms in the remainder of the paper.

Let ∥x − x′ ∥ B ∥x − x′ ∥ℓ1 (w) , where ∥ · ∥ℓ1 (w) denotes the weighted ℓ1

norm with weight vector w ∈ R𝑑 .
We define the long-term constraint 𝑐 (x) B ∥x∥ℓ1 (c) , i.e., the weighted ℓ1

norm with weight vector c ∈ R𝑑 . Then let the metric space 𝑋 be the ℓ1 ball
defined by 𝑋 B {x ∈ R𝑑 : 𝑐 (x) ≤ 1}. For all cost functions 𝑓𝑡 ( ·) : 𝑋 → R,
we assume bounded gradients such that 𝐿 ≤ [∇𝑓𝑡 ]𝑖/c𝑖 ≤ 𝑈 ∀𝑖 ∈ [𝑑 ], 𝑡 ∈ [𝑇 ],
where 𝑖 denotes the 𝑖th dimension of the corresponding vector, and 𝐿,𝑈 > 0

are known constants.
Letting 0 denote the origin in R𝑑 (w.l.o.g), we have the property 𝑓𝑡 (0) = 0

for all 𝑡 ∈ [𝑇 ], i.e., that “satisfying none of the long-term constraint costs
nothing”, since 𝑐 (0) = 0. We assume the player starts and ends at the origin, i.e.,
x0 = 0 and x𝑇+1 = 0, to enforce switching “on” and “off.” These assumptions are
intuitive and reasonable in practice, e.g., in our example motivating application.

Let 𝛽 B max

(
w𝑖/c𝑖

)
, which gives the greatest magnitude of the switching

cost coefficient when normalized by the constraint function. We assume that 𝛽
is bounded on the interval [0,𝑈 −𝐿/2) ; if 𝛽 is “too large” (i.e., > 𝑈 −𝐿/2), the
player should prioritize the switching cost.

Recall the player must fully satisfy the long-term constraint before the
sequence ends. If the player has satisfied 𝑧 (𝑡 ) fraction of it at time 𝑡 , we
assume a compulsory trade begins at time 𝑗 as soon as (𝑇 − ( 𝑗 + 1) ) · c𝑖 <
(1 − 𝑧 ( 𝑗 ) ) ∀𝑖 ∈ [𝑑 ] (i.e., when the time steps after 𝑗 are not enough to satisfy
the constraint). During this compulsory trade, a cost-agnostic algorithm makes
maximal decisions to satisfy the constraint. To ensure that the problem remains

https://arxiv.org/abs/2402.14012
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Algorithm 1 Consistency Limited Pseudo-cost minimization (CLIP)

input: consistency parameter 𝜖 , long-term constraint function 𝑐 ( ·) , pseudo-cost threshold function 𝜙𝜖 ( ·)
initialize: 𝑧 (0) = 0; 𝑝 (0) = 0; 𝐴(0) = 0; CLIP0 = 0; ADV0 = 0

while cost function 𝑓𝑡 ( ·) is revealed, untrusted advice a𝑡 is revealed, and 𝑧 (𝑡−1) < 1 do
update advice cost ADV𝑡 = ADV𝑡−1 + 𝑓𝑡 (a𝑡 ) + ∥a𝑡 − a𝑡−1 ∥ℓ1 (w) and advice utilization 𝐴(𝑡 ) = 𝐴(𝑡−1) + 𝑐 (a𝑡 )
solve constrained pseudo-cost minimization problem:

x𝑡 = argmin

x∈𝑋 :𝑐 (x) ≤1−𝑧 (𝑡−1)
𝑓𝑡 (x) + ∥x − x𝑡−1 ∥ℓ1 (w) −

∫ 𝑝 (𝑡−1) +𝑐 (x)

𝑝 (𝑡−1)
𝜙𝜖 (𝑢 )𝑑𝑢

s.t. CLIP𝑡−1 + 𝑓𝑡 (x) + ∥x − x𝑡−1 ∥ℓ1 (w) + ∥x − a𝑡 ∥ℓ1 (w) + ∥a𝑡 ∥ℓ1 (w) + (1 − 𝑧 (𝑡−1) − 𝑐 (x) )𝐿 +max( (𝐴(𝑡 ) − 𝑧 (𝑡−1) − 𝑐 (x) ), 0) (𝑈 − 𝐿)

≤ (1 + 𝜖 ) [ADV𝑡 + ∥a𝑡 ∥ℓ1 (w) + (1 − 𝐴(𝑡 ) )𝐿]
update cost CLIP𝑡 = CLIP𝑡−1 + 𝑓𝑡 (x𝑡 ) + ∥x𝑡 − x𝑡−1 ∥ℓ1 (w) and utilization 𝑧 (𝑡 ) = 𝑧 (𝑡−1) + 𝑐 (x𝑡 )
solve unconstrained pseudo-cost minimization problem:

x𝑡 = argmin

x∈𝑋 :𝑐 (x) ≤1−𝑧 (𝑡−1)
𝑓𝑡 (x) + ∥x − x𝑡−1 ∥ℓ1 (w) −

∫ 𝑝 (𝑡−1) +𝑐 (x)

𝑝 (𝑡−1)
𝜙𝜖 (𝑢 )𝑑𝑢

update pseudo-utilization 𝑝 (𝑡 ) = 𝑝 (𝑡−1) +min(𝑐 (x𝑡 ), 𝑐 (x𝑡 ) )

technically interesting, we assume that the compulsory trade is a small portion
of the sequence.
An example motivating application. Consider a carbon-aware tempo-
ral load shifting application with heterogeneous servers. Each dimension

corresponds to one of 𝑑 servers. An algorithm makes decisions x𝑡 ∈ R𝑑 ,
where x𝑖𝑡 ∈ [0, 1] denotes the load of the 𝑖th server at time 𝑡 . The long-term

constraint

∑𝑇
𝑡=1 𝑐 (x𝑡 ) ≥ 1 enforces that a job should be finished before

time𝑇 , and each c𝑖 represents the throughput of the 𝑖th server. Each cost

function 𝑓𝑡 (x𝑡 ) gives the carbon emissions of servers configured according

to x𝑡 , and the switching cost ∥ · ∥ℓ1 (w) captures the carbon overhead of

reconfiguring the job’s allocation.

3 MAIN RESULTS
Competitive algorithm. We build on a generalization of the threshold-

based designs used for simple decision spaces in the online search literature

called pseudo-cost minimization. Our competitive algorithm (ALG1) intro-
duces a novel application of this framework to multidimensional decision

spaces, systematically addressing the competitive drawbacks of typical

algorithm designs for online metric problems.

Recall that 𝑧 (𝑡 ) gives the fraction of the long-term constraint satisfied at

time 𝑡 . We define a function 𝜙 , which will be used to compute a pseudo-cost
minimization problem central to ALG1.

Definition 3.1 (Pseudo-cost threshold function 𝜙 for CFL). For any utiliza-
tion 𝑧 ∈ [0, 1], 𝜙 (𝑧 ) = 𝑈 − 𝛽 + (𝑈/𝛼 − 𝑈 + 2𝛽 ) exp(𝑧/𝛼 ) , where 𝛼 is the
competitive ratio and is defined in (1).

ALG1 solves the following pseudo-cost minimization problem at each

time step. At a high level, the inclusion of 𝜙 in this pseudo-cost problem

enforces that, upon arrival of a cost function, the algorithm satisfies “just

enough” of the long-term constraint.

Definition 3.2 (Pseudo-cost minimization problem (ALG1)). At each time
step, ALG1 solves the following to obtain online decision x𝑡 :

x𝑡 = argmin

x∈𝑋 :𝑐 (x) ≤1−𝑧 (𝑡−1)
𝑓𝑡 (x) + ∥x − x𝑡−1 ∥ℓ1 (w) −

∫ 𝑧 (𝑡−1) +𝑐 (x)

𝑧 (𝑡−1)
𝜙 (𝑢 )𝑑𝑢

In the following, we state that ALG1 is 𝛼-competitive and present a lower

bound implying 𝛼 is the best deterministic result for CFL.

Theorem 3.3. ALG1 is 𝛼-competitive for CFL, where 𝛼 is the solution to
𝑈 −𝐿−2𝛽

𝑈 −𝑈/𝛼−2𝛽 = exp(1/𝛼 ) , given by the following.𝑊 is the Lambert𝑊 function.

𝛼 B

[
𝑊

((
2𝛽

𝑈
+ 𝐿

𝑈
− 1

)
𝑒
2𝛽
𝑈

−1
)
− 2𝛽

𝑈
+ 1

]−1
, (1)

Theorem 3.4. There exists a family of CFL instances such that any de-
terministic online algorithm for CFL is at least 𝛼-competitive, where 𝛼 is as
defined in (1).

Learning-augmentation. We present CLIP (Consistency-Limited Pseudo-
cost minimization, Algorithm 1).

Definition 3.5 (Advice model). For CFL instance I ∈ Ω, let ADV denote
untrusted decision advice, i.e., ADV B {a𝑡 ∈ 𝑋 : 𝑡 ∈ [𝑇 ] }. If ADV is correct, it
attains the optimum (i.e., ADV(I) = OPT(I)).

For 𝜖 ∈ (0, 𝛼 − 1], we define a target robustness factor 𝛾𝜖 , as the unique
solution to 𝛾𝜖 = 𝜖 + 𝑈

𝐿
− 𝛾𝜖

𝐿
(𝑈 − 𝐿) ln

(
𝑈 −𝐿−2𝛽

𝑈 −𝑈/𝛾𝜖 −2𝛽

)
.

Definition 3.6 (Pseudo-cost threshold function 𝜙𝜖 ). Given 𝛾𝜖 as above and
𝑝 ∈ [0, 1], 𝜙𝜖 (𝑝 ) B 𝑈 − 𝛽 + (𝑈/𝛾𝜖 −𝑈 + 2𝛽 ) exp(𝑝/𝛾𝜖 ) .

For each 𝑡 ∈ [𝑇 ], we define a pseudo-utilization 𝑝 (𝑡 ) ∈ [0, 1], where
𝑝 (𝑡 ) ≤ 𝑧 (𝑡 ) ∀𝑡 , and 𝑝 (𝑡 )

describes the “robust satisfaction” of the long-term

constraint at time 𝑡 .

CLIP uses a novel projected consistency constraint designed to guar-

antee (1 + 𝜖 )-consistency against ADV by continuously comparing their

solutions in terms of the cost incurred so far, the switching cost trajectories,

and the projected worst-case cost required to complete the long-term con-

straint. At a high level, CLIP’s constrained pseudo-cost minimization yields

decisions x𝑡 that are as robust as possible while preserving consistency.
In the following, we state the consistency and robustness results for

CLIP and present a lower bound implying that CLIP achieves the optimal

tradeoff between the two.

Theorem 3.7. For any 𝜖 ∈ [0, 𝛼 − 1], CLIP is (1 + 𝜖 )-consistent and
𝛾𝜖 -robust for CFL (𝛾𝜖 as defined above).

Theorem 3.8. Given untrusted advice ADV and 𝜖 ∈ (0, 𝛼 − 1], any (1+𝜖 )-
consistent learning-augmented algorithm for CFL is at least 𝛾𝜖 -robust, where
𝛾𝜖 is defined above.
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