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1 INTRODUCTION

This paper focuses on scheduling contract algorithms. These algorithms require an allowed computation time as part

of their input, and, after that time, return a solution. The more time is allotted, the better the solution quality. By

consecutively running such an algorithm with increasing computation times, we obtain an interruptible anytime

algorithm: after any duration (larger than some threshold), the execution can be interrupted without warning and

a result must be output. The objective is of course to get a solution of better quality when the interruption happens

late, in order to take advantage of the available computation time. For instance, consider the schedule where the 𝑖th

execution of the contract is allotted a time 2
𝑖
, for 𝑖 ∈ Z. The schedule starts by infinitesimally small executions to ensure

that one contract is executed before the interruption. For any interruption time 𝑡 > 0, the longest execution by the

contract algorithm has lasted a duration at least 𝑡/4. This factor 4 between the performance achieved and the best

performance in hindsight (execute a single contract for a time 𝑡 ) is called the acceleration ratio. More formally, define

a schedule as a sequence 𝑋 = (𝑥𝑖 )𝑖∈Z where 𝑥𝑖 represents the length of the 𝑖th execution. Let ℓ (𝑋,𝑇 ) represent the
length of the last contract terminated by 𝑋 at time 𝑇 . The acceleration ratio of 𝑋 is defined as

(𝑋 ) = sup

𝑇

𝑇

ℓ (𝑋,𝑇 ) .

It is known that the best acceleration possible equals 4, achieved by the doubling schedule described above [1].

Contract scheduling has then been studied in more complex scenarios including the resort to multiple processors, the

need to complete multiple instances, or the presence of soft deadlines.
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2 Trovato et al.

In this paper, we study this problem under the lens of learning-augmented algorithms [2]. In this recent field, we

assume that the scheduler has access to a prediction about the interruption time. This prediction typically comes from

patterns learned on previous instances, and has an inherent quality, unknown to the scheduler. We focus on the objective

to obtain the best acceleration ratio assuming the prediction is perfect (i.e., the consistency), while maintaining an

acceleration of 4 even if the prediction is totally inaccurate (i.e., the robustness). Previous works [3] have shown that if

the prediction received is a single value representing the interruption time, the best possible consistency equals 2. It is

obtained by shifting the doubling algorithm so that the prediction meets the end of an execution.

A predictor may however be unable to provide such an information accurately, based on past instances for example.

We consider here two models which allow some flexibility on the information given. In the first model, the prediction

comes in the form of a probability distribution of the interruption time. In the second one, the prediction provides

multiple possible interruption times. In each setting, we establish the best possible consistency achievable while

retaining a robustness factor equal to 4. We then analyze numerically the performance of our solutions in various

scenarios.

2 DETAILED TECHNICAL RESULTS

For a given 𝜆 ∈ [0, 1), define the schedule 𝑋 (𝜆) = (2𝑖−𝜆)𝑖∈Z. The following proposition shows that, as we focus on

4-robust schedules, it suffices to consider the set of schedules ∪𝜆∈[0,1) {𝑋 (𝜆))}.

Proposition 2.1. For any 𝜆 ∈ [0, 1), 𝑋 (𝜆) is 4-robust. Conversely, every 4-robust schedule must belong in the class

∪𝜆∈[0,1) {𝑋 (𝜆)}.

In the distributional model, we assume that the predictor provides a probability distribution 𝜇 describing the estimated

interruption time. We define the consistency of a schedule 𝑋 given prediction 𝜇 as the expected maximum length of a

contract in hindsight divided by the expected length of the last contract executed by 𝑋 :

𝑐 (𝑋, 𝜇) = 𝑇∼𝜇 [𝑇 ]
𝑇∼𝜇 [ℓ (𝑋,𝑇 )]

.

We first show that, for any distribution 𝜇, it is possible to obtain a consistency better than 4 simply by choosing the

best schedule among a set of evenly shifted schedules. For any 𝑛, let 𝑆𝑛 denote the following collection of 𝑛 schedules

𝑋0 . . . , 𝑋𝑛−1, defined as 𝑋 𝑗 = (2𝑖− 𝑗/𝑛)𝑖∈Z.

Theorem 2.2. For any 𝑛 ∈ N∗, there exists a 4-robust schedule in 𝑆𝑛 that has consistency at most 4𝑛 · (21/𝑛 − 1).

We further show that this bound is the best possible.

Theorem 2.3. For any 𝑛 ∈ N∗, there exists a distributional prediction for which every collection 𝐶𝑛 that consists of 𝑛

4-robust schedules cannot contain a schedule of consistency smaller than 4𝑛 · (21/𝑛 − 1).

Noting that the limit of 4𝑛 · (21/𝑛 − 1) equals 4 ln 2, we can also achieve this limit with a continuous distribution. For

any 𝐷 > 0, define the probability distribution 𝜇𝐷 over [𝐷 ; 2𝐷] by the density function 𝑓𝐷 (𝑥) = 2𝐷/𝑥2.

Theorem 2.4. For any 𝐷 > 0 and every 4-robust schedule 𝑋 , we have 𝑐 (𝑋, 𝜇𝐷 ) ≥ 4 ln 2.

Therefore, for any 𝐷 , 𝜇𝐷 is a prediction for which the best 4-robust schedule achieves the worst consistency. We

show that such result still exhibits some smoothness: if the actual interruption time distribution is close to 𝜇𝐷 (taking
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the Earth Mover Distance as a metric), then the acceleration ratio is close to 4 ln 2. Such a feature would not be present

if all the probability mass of the prediction is located at a single point, as a slight decrease of the interruption time leads

to an execution which is not completed.

In the multiple advice model, the predictor provides a set of potential interruption times 𝑃 . We define the consistency

of a schedule 𝑋 assuming an adversary selects the interruption time among 𝑃 which leads to the highest acceleration

ratio:

𝑐 (𝑋, 𝑃) = sup

𝜏∈𝑃

𝜏

ℓ (𝑋, 𝜏) .

As we focus on schedules of the form 𝑋 (𝜆), we show that we can reduce the analysis by basically assuming all points

of 𝑃 belong to some interval [𝐷 ; 2𝐷]. Then, we construct a method determining which point of 𝑃 should coincide with

the end of a contract. This yields the following tight bound.

Theorem 2.5. For any 𝑃 , there exists a schedule computable in time 𝑂 (𝑘2) that has consistency at most 22−
1

𝑘 , where 𝑘

is the size of 𝑃 . Furthermore, this bound is tight, in that there exists a prediction 𝑃 such that every 4-robust schedule has

consistency at least 22−
1

𝑘 .
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