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Edge-weighted Online Bipartite Matching (EOBM) is a fundamental problem with applications in areas such as
online advertising, task scheduling, and inventory management. While machine learning (ML) techniques have
been developed to enhance the empirical performance of EOBM, they often su!ers from the lack of worst-case
performance guarantee. In this paper, we propose a dual-learning-augmented algorithm for EOBM (DULAM) with
the goal of guaranteeing the competitive ratio while exploiting the bene"ts of ML. The core of the design is
a safe dual solution space. DULAM projects the dual learning output into the dual solution space to ensure a
preset competitive ratio given any ML prediction.
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1 OVERVIEW
We consider Edge-weighted Online Bipartite Matching (EOBM, a.k.a. Display Ad) [1] which is
modeled as the left part of Fig. 1 and has the dual form in the right part of Fig. 1. Given a bipartite
graph G = {U,V, E}, the problem assigns one o#ine vertex from the set U to an online vertex
from V arriving at each round 𝐿 → [𝑀 ]. For conciseness, we also denote the online vertex arriving
at round 𝐿 as vertex 𝐿 . If an o#ine vertex 𝑁 → U is selected for vertex 𝐿 , a reward of 𝑂𝐿,𝑀 ↑ 0 is
obtained. For each o#ine vertex 𝑁 → U, we need to ensure that the total number of assigned online
vertexes to 𝑁 does not exceed 𝑃𝐿 . The goal of the problem is to maximize the total reward within 𝑀
rounds, i.e.

∑𝑁
𝑀=1

∑
𝐿→U 𝑂𝐿,𝑀𝑄𝐿,𝑀 where 𝑄𝐿,𝑀 → {0, 1} is the binary decision on whether 𝐿 is assigned

to 𝑁. EOBM has many application scenarios such as assigning online impressions to advertisers,
assigning online computing tasks to servers, etc.
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1 PROBLEM DESCRIPTION
We consider Edge-weighted Online Bipartite Matching (EOBM, a.k.a Display Ad) which is modeled
as the left part of (1) and has the dual form in the right part of (1) [1]. The problem is de!end on a
bipartite graph 𝐿 = {U,V, E}. In this problem, the agent assigns one o#ine vertex from the set
U to the online vertex from V arriving at each round 𝑀 → [𝑁 ]. For conciseness, we also denote the
online vertex arriving at round 𝑀 as vertex 𝑀 . If o#ine vertex 𝑂 → U is selected for vertex 𝑀 , a reward
of 𝑃𝐿,𝑀 ↑ 0 is added. For each o#ine vertex 𝑂 → U, we need to ensure that the total number of
assigned online vertexes to 𝑂 does not exceed 𝑄𝐿 . The goal of the problem is to maximize the total
reward within 𝑁 rounds, i.e.

∑𝑁
𝑀=1

∑
𝐿→U 𝑃𝐿,𝑀𝑅𝐿,𝑀 where 𝑅𝐿,𝑀 → {0, 1} is the decision on whether 𝑀 is

assigned to 𝑂. EOBM has been many application scenarios such as assigning online impressions to
advertisers, assigning online computing tasks to servers, etc.

max 𝑆 :=
𝑁∑
𝑀=1

∑
𝐿→U

𝑃𝐿,𝑀𝑅𝐿,𝑀

𝑇 .𝑀 .↓𝑂 → U,
𝑁∑
𝑀=1

𝑅𝐿,𝑀 ↔ 𝑄𝐿,

↓𝑀 → [𝑁 ],
∑
𝐿→U

𝑅𝐿,𝑀 ↔ 1.

min 𝑈 :=
∑
𝐿→U

𝑄𝐿𝑉𝐿 +
𝑁∑
𝑀=1

𝑊𝑀

𝑇 .𝑀 .↓𝑂 → U, 𝑀 → [𝑁 ],𝑉𝐿 + 𝑊𝑀 ↑ 𝑃𝐿,𝑀 ,

↓𝑂 → U, 𝑀 → [𝑁 ], 𝑊𝑀 ↑ 0,𝑉𝐿 ↑ 0.

(1)

Same as existing works, we consider competitive ratio as the metric indicating the worst-case
performance, which is expressed as 𝑋𝑌 = maxG

𝑂
𝑂↗ where 𝑆↗ is the reward of the o#ine-optimal

solution. Beyond that, we aim to use Machine Learning (ML) to improve the expected performance
expressed as EG [𝑆]. Unfortunately, without any assumption, any algorithm to solve EOBM problem
only has zero competitive ratio. Despite that, EOBM is often studied under the free disposal setting:
Each o#ine vertex is free to dispose of previously matched vertexes to accept new arrivals with
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Fig. 1. Primal and Dual Problems.

We exploit ML predictions
to improve the expected perfor-
mance expressed as EG [𝑅 (G)].
Furthermore, we aim to guar-
antee the worst-case perfor-
mance of ML-based solutions.
The worst-case performance is
measured by competitive ratio
expressed as 𝑆𝑇 = maxG

𝑂 (G)
𝑂↓ (G) where 𝑅↓ (G) is the reward of the o#ine-optimal solution. Un-

fortunately, without further assumption, any algorithm to solve EOBM problem only has zero
competitive ratio [1]. Despite that, EOBM is often studied under the free disposal setting: Each
o#ine vertex is free to dispose of previously matched vertexes to accept new arrivals with higher
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Algorithm 1 Dual-Learning-Augmented EOBM (DULAM)
1: Initialization: ↔𝑁 → U,𝑈𝐿 = 0, 𝑉0, · · · , 𝑉𝑁 = 0.
2: for 𝐿=1 to 𝑀 , a new request 𝐿 → V arrives do
3: Inference. Get the ML prediction ω̃𝐿,𝑀 ,↔𝑁 → U.
4: Projection. Project ω̃𝐿,𝑀 into D𝐿,𝑀 in (1) and get ω𝐿,𝑀 ,↔𝑁 → U.
5: Matching. ↔𝑁 → U, assign score 𝑊𝐿,𝑀 = max{0,𝑋𝑂𝐿,𝑀 ↗ 𝑃𝐿ω𝐿,𝑀 }. If ↔𝑁 → U, 𝑊𝐿,𝑀 = 0, leave 𝐿

unmatched. Otherwise, assign 𝐿 to 𝑁𝑀 that maximizes 𝑊𝐿,𝑀 and set 𝑄𝐿𝐿 ,𝑀 = 1.
6: Free disposal. If 𝑁𝑀 has more than 𝑃𝐿𝐿 queries assigned, let 𝑌 be the query with the least

value 𝑍𝐿𝐿 ,𝑀 and set 𝑄𝐿𝐿 ,𝑃 = 0.
7: Dual update. Set the dual variable as 𝑉𝑀 = 𝑊𝐿𝐿 ,𝑀 , and 𝑈𝐿𝐿 = 𝑈𝐿𝐿 + ω𝐿𝐿 ,𝑀 ↗ 𝑋𝑍𝐿𝐿 ,𝑀/𝑃𝐿𝐿 .
8: end for

edge weights. The free disposal is commonly considered as an important economic concept in "elds
like advertising.

Contribution. A learning-augmented algorithm for EOBM with a competitive ratio guarantee has
been designed in [2], but the algorithm in [2] requires a parallel execution of an expert algorithm
and its competitive ratio relies on the expert performance. Learning-augmented algorithm without
relying on an expert has been designed for the Adwords problem in [3], but it remains a challenge
to design expert-free learning-augmented algorithm for the more challenging EOBM. In this paper,
we propose the DUal-Learning-Augmented EOBM (DULAM) to guarantee the competitive ratio while
exploiting the bene"ts of ML for EOBM.
2 ALGORITHM
To utilize the ML predictions for improved average performance under the competitive ratio
guarantee, we develop DULAM in Alg. 1. The key step of the algorithm is to project the ML prediction
into a dual set D𝐿 and use the projected prediction ω𝐿,𝑀 to set the score 𝑊𝐿,𝑀 for each o#ine vertex
𝑁 → U and update the dual variables. The key to bound the competitive ratio is the design of
the set D𝐿 . To give the expression of D𝐿 , we denote I𝐿,𝑀 as the set of online vertexes matched
to 𝑁 at the beginning of round 𝐿 and denote Ī𝐿,𝑀 = Disp(I𝐿,𝑀 ↘ {𝐿}) where Disp means applying
a free disposal if |I𝐿,𝑀 | = 𝑃𝐿 . Rank the weights of the vertexes in Ī𝐿,𝑀 in an non-increasing order
and denote �̄�𝑀 ( 𝑏), 𝑏 = 1, · · · , 𝑃𝐿 as the 𝑏↗th vertex in a non-increasing order. If 𝑏 ↑ |Ī𝐿,𝑀 |, then
�̄�𝑀 ( 𝑏) represents null vertex with weight 𝑂𝐿,�̄�𝐿 ( 𝑅 ) = 0. Given a set of weights {𝑐 𝑅 , 𝑏 = 1, · · · , 𝑃𝐿},
we denote a weighted average as 𝑑 ({𝑂𝐿,�̄�𝐿 ( 𝑅 ) , 𝑐 𝑅 } 𝑅→ [𝑆𝑀 ] ) = 1∑𝑁𝑀

𝑂=1 𝑇 𝑂

∑𝑆𝑀
𝑅=1 𝑐 𝑅𝑂𝐿,�̄�𝐿 ( 𝑅 ) . Then, any ω𝐿,𝑀

in the safe dual set D𝐿 satis"es two inequalities as below.

D𝐿 =
{
ω𝐿,𝑀 | 𝑋𝑂𝐿,𝑀 ↗ 𝑃𝐿ω𝐿,𝑀 ↑ 𝑂𝐿,𝑀 ↗ 𝑈𝐿 ; ω𝐿,𝑀 ↗ 𝑋𝑍𝐿,𝑀/𝑃𝐿 ↑ max{𝑑 ({𝑂𝐿,�̄�𝐿 ( 𝑅 ) , 𝑐 𝑅 } 𝑅→ [𝑆𝑀 ] ) ↗ 𝑈𝐿, 0}

}
,

(1)
where 𝑋 ↑ (1 + 1

𝑆𝑀
)𝑆𝑀/((1 + 1

𝑆𝑀
)𝑆𝑀 ↗ 1) is a preset parameter, 𝑐 𝑅 = (1 + 1

𝑆𝑀
) 𝑅↗1 and 𝑍𝐿,𝑀 is the smallest

weight of the online vertices in Ī𝐿,𝑀 .
3 ANALYSIS
We prove that DULAM always guarantees a competitive ratio given any ML prediction.
Theorem 3.1. Choose 𝑋 ↑ (1 + 1

𝑆𝑀
)𝑆𝑀/((1 + 1

𝑆𝑀
)𝑆𝑀 ↗ 1) in the set D𝐿 . Given any ML model, DULAM in

Algorithm 1 achieves a competitive ratio of 1/𝑋.
Theorem 1 shows that there exists a safe dual set D𝐿,𝑀 in (1) and by projecting the dual prediction

into the safe dual set D𝐿,𝑀 , DULAM can always guarantee a preset competitive ratio 𝑋 for EOBM. The
preset competitive ratio in DULAM does not exceed the competitive ratio by [1] which matches the
optimal competitive ratio as 𝑃𝐿 ≃ ⇐. However, if a smaller preset competitive ratio 𝑋 is selected,
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the dual set D𝐿 becomes larger and DULAM gets more freedom to exploit the bene"t of ML for
expected performance.

Proof sketch. The proof Theorem 1 relies on the primal-dual conditions of the competitive ratio
and the feasibility of the dual set. First, we prove that the constraints of the dual problem in Fig. 1
are always satis"ed if the inequalities in D𝐿 are satis"ed. Next, the primal-dual ratio is bounded
as 1/𝑋 due to the dual update rule in Line 7 of Algorithm 1. Finally, we show the dual set D𝐿 is
not empty by providing a nominal ω†

𝐿,𝑀 which always satis"es the constraints in D𝐿 and has the
expression as

ω†
𝐿,𝑀 = 𝑑 ({𝑂𝐿,�̄�𝐿 ( 𝑅 ) , 𝑐 𝑅 } 𝑅→ [𝑆𝑀 ] ) ↗ 𝑑 ({𝑂𝐿,𝑄𝐿 ( 𝑅 ) , 𝑐 𝑅 } 𝑅→ [𝑆𝑀 ] ) + 𝑋𝑍𝐿,𝑀/𝑃𝐿, (2)

where 𝑐 𝑅 = (1 + 1
𝑆𝑀
) 𝑅↗1, 𝑍𝐿,𝑀 is the smallest weight of the online vertices in Ī𝐿,𝑀 , 𝑎𝑀 ( 𝑏) is the 𝑏th

online node in I𝐿,𝑀 and �̄�𝑀 ( 𝑏) is the 𝑏th online node in Ī𝐿,𝑀 = Disp(I𝐿,𝑀 ↘ {𝐿}) (the vertices in I𝐿,𝑀
and Ī𝐿,𝑀 are ranked based on a non-increasing order of the corresponding weights.).
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