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1 Introduction and Problem Formulation
The classic online knapsack problem (OKP) seeks to maximize the value of accepted items from
an arrival sequence under capacity constraints. We design learning-augmented algorithms us-
ing succinct predictions of the offline optimal’s critical value 𝑣 , achieving near Pareto-optimal
consistency-robustness trade-offs (see Table 1). OKP models tasks in online advertising [6], resource
management [5], pricing [1], and supply chains [3]. Unlike classical competitive analysis [2, 4, 6],
we incorporate predictions to overcome worst-case limits.

Consider a knapsack with capacity 1 (w.l.o.g.). Items arrive online, each with a value 𝑣𝑖 and
weight 𝑤𝑖 . Upon arrival, an algorithm decides 𝑥𝑖 ∈ X𝑖 , the acceptance of item 𝑖 , without future
knowledge. X𝑖 denotes feasible decisions for item 𝑖 . Each decision 𝑥𝑖 yields profit 𝑥𝑖𝑣𝑖 , aiming to
maximize total profit under capacity constraints. When X𝑖 = {0,𝑤𝑖 }, the algorithm decides to pack
or reject the entire item (OIKP). For X𝑖 = [0,𝑤𝑖 ], fractional packing is allowed (OFKP). We use OKP
for both problems unless otherwise specified. In the offline case where items are known apriori, an
OKP instance I = {(𝑣𝑖 ,𝑤𝑖 )}𝑖∈[𝑛] corresponds to:

max
{𝑥𝑖 }𝑖∈ [𝑛]

∑︁𝑛

𝑖=1
𝑥𝑖𝑣𝑖 , s.t.

∑︁𝑛

𝑖=1
𝑥𝑖 ≤ 1, 𝑥𝑖 ∈ X𝑖 : ∀𝑖 ∈ [𝑛] . (1)

The critical value is the smallest value among the items (possibly fractionally) packed. Also,
assume that all item values lie within [𝐿,𝑈 ] for all 𝑖 ∈ [𝑛]. Note that 𝐿 and𝑈 are not related to the
predicted interval [ℓ,𝑢].

2 Main Results
We introduce algorithms for the online knapsack problem (OKP) under several prediction models.

In the paper, trusted predictions refer to settings where the provided prediction (either a point
or interval estimate of the critical value) is assumed to be accurate and can be used directly by
the algorithm; this aligns with the algorithms with advice literature, such as [2], where advice is
reliable and often strong. In contrast, untrusted predictions correspond to the learning-augmented
setting, where predictions may be inaccurate, and the algorithm must achieve a balance between
consistency (performance under correct predictions) and robustness (performance under adversarial
or incorrect predictions), reflecting the framework of consistency-robustness trade-offs.

PP-b is a simple reserve-then-greedy algorithm for trusted point predictions, while PP-a improves
upon it with a reserve-while-greedy strategy that achieves the optimal competitive ratio. For trusted
interval predictions, IPA matches the theoretical lower bound by leveraging both endpoints of the

Authors’ Contact Information: Helia Karisani, University of Massachusetts Amherst, Amherst, USA, hkarisani@umass.edu;
Mohammadreza Daneshvaramoli, University of Massachusetts Amherst, Amherst, USA, mdaneshvaram@umass.edu; Adam
Lechowicz, University of Massachusetts Amherst, Amherst, USA, alechowicz@cs.umass.edu; Bo Sun, University of Waterloo,
Amherst, USA, bo.sun@uwaterloo.ca; Cameron Musco, University of Massachusetts Amherst, Amherst, USA, cmusco@cs.
umass.edu; Mohammad Hajiesmaili, University of Massachusetts Amherst, Amherst, USA, hajiesmaili@cs.umass.edu.



2 Karisani, Daneshvaramoli, Lechowicz, Sun, Musco, and Hajiesmaili

Table 1. Summary of contributions.

Prediction Model Algorithm Upper Bound Lower Bound
Point Prediction PP-b , PP-a 2, 1 +min{1, 𝜔̂ } 1 +min{1, 𝜔̂ } (Theorem 2.1)

Interval Prediction IPA 2 + ln(𝑢/ℓ ) (Theorem 2.2) 2 + ln(𝑢/ℓ ) (Theorem 2.3)
Consistency- MIX 2/𝜆-consistent (𝜆 ∈ (0, 1)) 2/𝜆-consistent (𝜆 ∈ (0, 1))
robustness ln(𝑈/𝐿)+1

1−𝜆 -robust (Theorem 2.4)∗ Ω
(
ln(𝑈/𝐿)+1

1−𝜆

)
-robust (Theorem 2.5)∗

Notes: • Results are for online fractional knapsack (OFKP); integral conversion incurs small loss under standard assumptions.
• 𝜔̂ : total weight of items with critical value 𝑣.
• ℓ , 𝑢: bounds on predicted critical value 𝑣.

• 𝜆 ∈ (0, 1) : trust hyperparameter in learning-augmented algorithms.
• ∗ indicates value-bounded setting with item values in [𝐿,𝑈 ].

interval. To handle untrusted predictions, MIX combines a robust baseline with a trusted algorithm,
balancing consistency and robustness through a tunable trust parameter. Finally, Fr2Int converts
fractional solutions into integral ones when item weights are small, extending the results to the
integral setting. Below we mention our most significant results.

Theorem 2.1. Given an exact prediction (trusted point prediction) on the critical value 𝑣 , no online
algorithm for OFKP can achieve a competitive ratio smaller than 1 + min{1, 𝜔̂} , while PP-a is
1 +min{1, 𝜔̂}-competitive.

Theorem 2.2. Given an interval prediction [ℓ,𝑢] and an algorithm 𝐴 for OFKP with a worst-case
competitive ratio of 𝛼 , IPA is (𝛼 + 1)-competitive (if we use ZCL we get (2 + ln(𝑢/ℓ))-competitive) .

Theorem 2.3. Given a trusted interval prediction [ℓ,𝑢], no online algorithm for OFKP can achieve a
competitive ratio better than (2 + ln(𝑢/ℓ)).

Our MIX algorithm combines ZCL, the optimal (ln(𝑈/𝐿) + 1)-competitive OFKP algorithm [6], with
one of the trusted OFKP prediction algorithms that we devise (e.g., PP-a, IPA, see Table 1).
Theorem 2.4. MIX is ln(𝑈/𝐿)+1

(1−𝜆) -robust and 𝑐
𝜆
-consistent for OFKP for any 𝜆 ∈ (0, 1), where 𝑐 is the

competitive ratio of the inner prediction ALG with an accurate prediction.

Theorem 2.5. Given an untrusted prediction of the critical value, any 𝛾-robust algorithm for OKP

(where 𝛾 ∈ [ln(𝑈/𝐿) + 1,∞)) is at least 𝜂-consistent for 𝜂 ≥ max
{
2 − 𝐿/𝑈 , 1

1− 1
𝛾
ln(𝑈/𝐿)

}
. Furthermore,

in the limit as 𝑈/𝐿 → ∞, any 2/𝜆-consistent (for some 𝜆 ∈ (0, 1)) algorithm is at least 𝛽-robust, for
𝛽 =

1+ln(𝑈/𝐿)
1−𝜆 − 𝑜 (1) = Ω

(
1+ln(𝑈/𝐿)

1−𝜆

)
.

Theorem 2.6. Given a 𝛾-competitive online algorithm ALG for OFKP and fixed parameter 𝛿 > 0,
if the maximum item weight of OIKP is upper bounded by 𝜖 < 1/⌈log(1+𝛿 ) 𝑈/𝐿⌉+1, then the algorithm
Fr2Int-ALG is 𝛾 · 1+𝛿/1−𝜖 ( ⌈log(1+𝛿 ) 𝑈/𝐿⌉+1) competitive for OIKP.
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